TMF882X System-Crosstalk

Optical Stack Design for TMF882X-SHIELD Board

v1-00 • 2022-Oct-31
Content Guide

<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
<th>2.1 Explanation and Contributive Factors</th>
<th>2.2 Optical Design Guide (ODG) Recommendation</th>
<th>2.3 System Crosstalk Measurement With TMF882X-EVM GUI</th>
<th>2.4 Optical Barrier – Rubber Boot</th>
<th>3.1 Cover Glass Dimensions</th>
<th>3.2 Optical Transmission</th>
<th>3.3 Airgap Setting</th>
<th>3.4 Crosstalk Measurements</th>
<th>3.5 System-Crosstalk Over Zones</th>
<th>3.6 Cover Glass and Spacer (air-gap) Recommendation for Each Mode</th>
<th>3.7 Cover Glass Ordering Codes</th>
<th>4 Revision Information</th>
<th>5 Legal Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>................................. 3</td>
<td>... 4</td>
<td>... 4</td>
<td>... 4</td>
<td>... 5</td>
<td>... 7</td>
<td>... 7</td>
<td>... 8</td>
<td>... 8</td>
<td>... 9</td>
<td>... 11</td>
<td>... 12</td>
<td>... 13</td>
<td>... 14</td>
</tr>
</tbody>
</table>
1 Introduction

For optimal sensor performance, a well-adjusted optical design is required. This document covers the required information and guidelines for an optimal optical-stack setup. The main points covered in the document will be the cover glass and the air-gap size between the sensor surface and the cover glass.

Figure 1:
Optical Stack With an Illustration of the Field of View (FoV) and Field of Illumination (FoI)
2 System Crosstalk

2.1 Explanation and Contributive Factors

The system crosstalk is a result of internal package and cover glass crosstalk. The defined system crosstalk range (see TMF882X Optical Design Guide) should be used to give the ideal Time-of-Flight (ToF) system performance.

The amount of system crosstalk depends of several parameters:

- Glass thickness
 - Thicker glass will result in higher crosstalk
- Aperture size (exclusion area if cover glass is opaque coated)
 - Apertures are cutting off the FoI/FoV and attenuating the reflection from the cover-glass which causes a reduced crosstalk
- Optical barrier between Tx & Rx apertures
 - An optical barrier cuts off the light transmitting from Tx to Rx which reduces the crosstalk
- Contamination/smudge
 - Smudge on the sensor / cover glass leads to a higher crosstalk
- Ambient light
 - Ambient light increases the crosstalk
- Airgap between sensor and cover glass
 - Increasing the airgap will increase crosstalk, detailed explanation in following chapters
- Ink/tint characteristics

2.2 Optical Design Guide (ODG) Recommendation

For a detailed optical stack design, please refer to the optical design guide:

2.3 System Crosstalk Measurement With TMF882X-EVM GUI

Operate the TMF882X with the full optical stack in the end-application system with 550k iterations. Additional requirements are, no target in front (at least the crosstalk peak should be distinguishable from the target peak) and a low ambient light environment (best case, no light at all).
The highest peak in the histogram is the valued system crosstalk.

Figure 2:
Recommended Crosstalk Range

<table>
<thead>
<tr>
<th>Mode</th>
<th>Min. Crosstalk Counts</th>
<th>Max. Crosstalk Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x3</td>
<td>900</td>
<td>15200</td>
</tr>
<tr>
<td>4x4</td>
<td>900</td>
<td>16000</td>
</tr>
<tr>
<td>8x8</td>
<td>320</td>
<td>6360</td>
</tr>
</tbody>
</table>

2.4 Optical Barrier – Rubber Boot

Where the airgap between the sensor and the cover glass or the cover glass thickness cannot be kept in the recommended range, an option is to utilize a “rubber boot” which is inexpensive to manufacture and easy to install.

This soft rubber fills the gap between the SPADs and VCSEL as well as the gap between the sensor and the glass. The rubber boot then acts as an effective optical barrier and is reducing the system crosstalk.

Please note that a rubber boot is not part of the TMF882X-SHIELD board but is recommended for a stable system crosstalk.

For details regarding rubber boot design used in the TMF882X-EVM kit, please refer to the following document:

https://ams.com/documents/20143/6015057/TMF882x-RB_PD001049_1-00_STEP
3 Cover Glass for TMF882X-SHIELD Board

The TMF882X-SHIELD board contains four different glass thickness variants (0.5 mm / 0.6 mm / 0.7 mm and 0.8 mm).

Figure 3: Cover Glass
3.1 Cover Glass Dimensions

Figure 4: Cover Glass Dimensions

(1) * varies with glass thickness

3.2 Optical Transmission

The TMF882X uses a VCSEL at 940 nm wavelength.
The attached cover glass transmission in the 940 nm wavelength range is ~95% for all four-thickness variants.
3.3 Airgap Setting

The airgap between sensor and cover glass is adjustable with the included airgap-spacers (0.17 mm / 0.25 mm / 0.38 mm / 0.5 mm). Place the air-gap spacer of your choice underneath the cover glass and tighten the screws.

Figure 5:
Optical Stack for TMF882X-SHIELD Board

3.4 Crosstalk Measurements

In this measurement (4x4 mode), you can see how the airgap and the glass-thickness affect the system-crosstalk.

The maximum and minimum crosstalk count of all zones per measurement is shown in the chart. The two red lines show the ODG limits for the system-crosstalk.

If the crosstalk exceed the max limit then the tolerance to smudge is reduced - as a general rule if the crosstalk + smudge is about 60k count, it will be detected as a false target.

If the crosstalk is below the minimal ODG limit then this following effects may happen:

- Calibration can fail.
- Optical zero compensation over temperature might be degraded.
The trend is showing that a higher airgap and glass-thickness is increasing the system crosstalk.

3.5 System-Crosstalk Over Zones

The crosstalk distribution over the zones is not constant. In the following chart, you can see a typical arrangement over the zones:
System crosstalk over the zones in 3x3 mode with 0.6 mm thick cover glass and 0.38 mm airgap-spacer.

The zones in the edge and corner position have potentially a higher crosstalk then the ones in the center position; this also applies for the 4x4 and 8x8 mode.

The distribution amount is not consistent, part-to-part variation is expected.
3.6 Cover Glass and Spacer (air-gap) Recommendation for Each Mode

Here you can find a cover glass and air-gap recommendation for the shield board which fulfill the ODG crosstalk limits.

Figure 8:
Recommendation for Cover Glass and Airgap in 3x3 Mode

<table>
<thead>
<tr>
<th></th>
<th>airgap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3x3</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>0.5mm</td>
<td>✗</td>
</tr>
<tr>
<td>0.6mm</td>
<td>✗</td>
</tr>
<tr>
<td>0.7mm</td>
<td>✗</td>
</tr>
<tr>
<td>0.8mm</td>
<td>✗</td>
</tr>
</tbody>
</table>

Figure 9:
Recommendation for Cover Glass and Airgap in 4x4 Mode

<table>
<thead>
<tr>
<th></th>
<th>airgap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4x4</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>0.5mm</td>
<td>✗</td>
</tr>
<tr>
<td>0.6mm</td>
<td>✗</td>
</tr>
<tr>
<td>0.7mm</td>
<td>✗</td>
</tr>
<tr>
<td>0.8mm</td>
<td>✗</td>
</tr>
</tbody>
</table>
Figure 10:
Recommendation for Cover Glass and Airgap in 8x8 Mode

<table>
<thead>
<tr>
<th>cover glass thickness</th>
<th>airgap</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x8</td>
<td>None</td>
</tr>
<tr>
<td>0.5mm</td>
<td>☒</td>
</tr>
<tr>
<td>0.6mm</td>
<td>☒</td>
</tr>
<tr>
<td>0.7mm</td>
<td>✔</td>
</tr>
<tr>
<td>0.8mm</td>
<td>☒</td>
</tr>
</tbody>
</table>

3.7 Cover Glass Ordering Codes

Please find here the ordering codes for the cover glasses (http://www.hornix.com.tw/en/home/).

0.5mm thickness:
IR-T114-PM3D-A610

0.6mm thickness:
IR-T115-PM3D-A610

0.7mm thickness:
IR-T116-PM3D-A610

0.8mm thickness:
IR-T117-PM3D-A610
4 Revision Information

<table>
<thead>
<tr>
<th>Changes from previous version to current revision v1-00</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial version</td>
<td></td>
</tr>
</tbody>
</table>

- Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- Correction of typographical errors is not explicitly mentioned.
5 Legal Information

Copyrights & Disclaimer
Copyright ams-OSRAM AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Information in this document is believed to be accurate and reliable. However, ams-OSRAM AG does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Applications that are described herein are for illustrative purposes only. ams-OSRAM AG makes no representation or warranty that such applications will be appropriate for the specified use without further testing or modification. ams-OSRAM AG takes no responsibility for the design, operation and testing of the applications and end-products as well as assistance with the applications or end-product designs when using ams-OSRAM AG products. ams-OSRAM AG is not liable for the suitability and fit of ams-OSRAM AG products in applications and end-products planned.

ams-OSRAM AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data or applications described herein. No obligation or liability to recipient or any third party shall arise or flow out of ams-OSRAM AG rendering of technical or other services.

ams-OSRAM AG reserves the right to change information in this document at any time and without notice.

RoHS Compliant & ams Green Statement
RoHS Compliant: The term RoHS compliant means that ams-OSRAM AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU 2015/863), including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br/Cl): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) and do not contain Chlorine (Cl not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams-OSRAM AG knowledge and belief as of the date that it is provided. ams-OSRAM AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams-OSRAM AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams-OSRAM AG and ams-OSRAM AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Headquarters
ams-OSRAM AG
Tobelbader Strasse 30
8141 Premstaetten
Austria, Europe
Tel: +43 (0) 3136 500 0

Please visit our website at www.ams.com
Buy our products or get free samples online at www.ams.com/Products
Technical Support is available at www.ams.com/Technical-Support
Provide feedback about this document at www.ams.com/Document-Feedback
For sales offices, distributors and representatives go to www.ams.com/Contact
For further information and requests, e-mail us at ams_sales@ams.com