Content Guide

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Description ... 3</td>
</tr>
<tr>
<td>2</td>
<td>Hardware Description ... 3</td>
</tr>
<tr>
<td>2.1</td>
<td>Input Impedance .. 3</td>
</tr>
<tr>
<td>2.2</td>
<td>RF rectifier performance ... 4</td>
</tr>
<tr>
<td>2.3</td>
<td>Measurement Setup ... 6</td>
</tr>
<tr>
<td>3</td>
<td>Contact Information .. 7</td>
</tr>
<tr>
<td>4</td>
<td>Copyrights & Disclaimer ... 8</td>
</tr>
<tr>
<td>5</td>
<td>Revision Information ... 9</td>
</tr>
</tbody>
</table>
1 General Description
This document contains typical characteristics for the RF front end. The characteristics are measured with a network analyzer. All characterizations have been done without battery supply.

2 Hardware Description

2.1 Input Impedance
The input impedance is specified for bare die and for QFN:
- bare die: 9-j330Ω
- QFN: 31-j320Ω
The impedance is frequency depended. Typical curves are below.

![Input Impedance Graphs](image-url)
2.2 RF rectifier performance

The characterization for the below chart was done at 900MHz input signal frequency and QFN packed devices were used.
The power efficiency and voltage-current characteristic was done at 900MHz input signal frequency with QFN packed devices. The characterization has been done with 3 different power levels with an ohmic load connected between the VPOS and VSS pins.

RF rectifier power conversion efficiency

RF rectifier voltage-current characteristic
2.3 Measurement Setup

The SL900A device has been characterized in 3 different set ups – Die on SMA, Die on PCB and QFN on PCB.

The Die on SMA set up is used for the characterisation of the pure die impedance. This information is used for inlay manufacturers where the chip is bumped and directly attached to the antenna pads.

The Die on PCB is used to characterise the die with normally long bonding wires and a ground plane on the bottom of the PCB.

The QFN on PCB is used for characterisation of the packed devices that are usually soldered on a PCB substrate.
3 Contact Information

Buy our products or get free samples online at:
www.ams.com/ICdirect

Technical Support is available at:
www.ams.com/Technical-Support

Provide feedback about this document at:

For further information and requests, e-mail us at:
ams_sales@ams.com

For sales offices, distributors and representatives, please visit:
www.ams.com/contact

Headquarters
ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten
Austria, Europe

Tel: +43 (0) 3136 500 0
Website: www.ams.com
4 Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Information in this document is believed to be accurate and reliable. However, ams AG does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Applications that are described herein are for illustrative purposes only. ams AG makes no representation or warranty that such applications will be appropriate for the specified use without further testing or modification. ams AG takes no responsibility for the design, operation and testing of the applications and end-products as well as assistance with the applications or end-product designs when using ams AG products. ams AG is not liable for the suitability and fit of ams AG products in applications and end-products planned.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data or applications described herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

ams AG reserves the right to change information in this document at any time and without notice.
5 Revision Information

<table>
<thead>
<tr>
<th>Changes from 1-00 (2014-Jun-26) to current revision 1-01 (2014-Jul-22)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update to corporate format</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Note: Page numbers for the previous version may differ from page numbers in the current revision.