
Product
Document

Published by
ams OSRAM Group

austriamicrosystems AG

is now

ams AG
The technical content of this austriamicrosystems application note is still valid.

Contact information:

Headquarters:
ams AG

Tobelbaderstrasse 30

8141 Unterpremstaetten, Austria

Tel: +43 (0) 3136 500 0

e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 1 of 14

This application note describes the available options for EASYZAPP programming of AS5115 and AS5215 (dual die version).

Starting with the general permanent programming of the OTP memory register, it also describes the “soft writing” for single or

multiple non-permanent writing of the OTP and the features for verification after programming.

For an overall description of the device, please refer to the relevant datasheet.

1 Hardware Connections for OTP Memory Programming

For OTP memory access, 3 signals are required: DIO, CS and CLK; for programming in addition PROG. The related

programming voltage Vprog (switch position 3) is always between 8V….8.5V. It has to be buffered by a fast 100nF and a 10uF

capacitor, which should be placed as close as possible to the PROG pin.

For the AS5215, below shown signal lines must be carried out twice (3 lines per device).

Figure 1: Programming circuit of AS5xxx

Note: During normal operation the PROG pin should be supplied with 5V (Figure 1, switch position 2)!

AN5115-40 EASYZAPP Programming

MAGNETIC ROTARY ENCODER

OTP Programming Guide

APPLICATION NOTE

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 2 of 14

2 One Time Programmable Register (OTP)

The OTP block should add flexibility to the user. It allows defining user parameter like a new zero position, sensitivity and

several other output modes (depending on the product). It is not recommended to change the factory settings of the device.

By default the periphery pins CS, CLK, PDIO are used for the SSI interface. The device starts in Normal Operating Mode – one

command-/data-bit needs one clock cycle – as shown in Figure 2.

Figure 2: Normal Operat ing Mode

Access to the OTP block is granted by sending a special command (EN_PROG) over the SSI Interface to the OTP block. This

command sets the device in Extended Operating Mode, where the device is able to handle signals for special requirements. In

this mode, the digital interface needs four clock cycles for one data-bit (see Figure 3).

Figure 3: Extended Operat ing Mode

Each command (READ, WRITE, EN_PROG, etc.) consists of 5 bits, whereas the amount of data bits is depending on the

operating mode. The OTP buffer structure of both devices is shown in chapter 4.

Note: Please be aware that there exist two sets of commands, one for Normal Operating Mode and one for Extended Operating

Mode.

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 3 of 14

2.1 Commands

Below table shows an overview of all commands of AS5115 and AS5215.

Mode Command bin Protocol

WRITE_CONFIG 10111

5 command bits

+

16 data bits

1 CLK per data bit
Normal Mode

EN_PROG 10000

5 command bits

+ data bits:

1000110010101110

1 CLK per data bit

WRITE_OTP 11111

READ_OTP 01111

PROG_OTP 11001
Extended Mode

READ_OTP_ANA 01001

5 command bits

+

46 data bits

4 CLK per data bit

Table 1: SSI Commands

For detailed information concerning buffer structure and data bit sequence, please refer to chapter 4.

2.2 Timings

The following table contains all t imings related to Figure 2 and Figure 3.

Symbol Parameter Min Max Unit

t1 Chip select to positive edge of CLK 30 - ns

t2 Chip select to drive bus externally 0 - ns

t3 Setup time command bit
Data valid to positive edge of CLK

30 - ns

t4 Hold time command bit
Data valid after positive edge of CLK

15 - ns

t5 Float time
Positive edge of CLK for last command bit to bus float

- CLK/2+0 ns

t6 Bus driving time
Positive edge of CLK for last command bit to bus drive

CLK/2 +0 - ns

t7 Setup time data bit
Data valid to positive edge of CLK

CLK/2 +0 CLK/2 +30 ns

t8 Hold time data bit
Data valid after positive edge of CLK

CLK/2 +0 - ns

t9 Hold time chip select
Positive edge CLK to negative edge of chip select

CLK/2 +0 - ns

t10 Bus floating time
Negative edge of chip select to float bus

- 30 ns

t11 Hold time data bit @ write access
Data valid to positive edge of CLK

30 - ns

t12 Hold time data bit @ write access
Data valid after positive edge of CLK

15 - ns

t13 Bus floating time
Negative edge of chip select to float bus

- 30 ns

Table 2: Timings

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 4 of 14

2.3 Programming Sequence

This chapter shows a complete programming sequence, including a verification of all settings with analog-readback.

After power up, the device is by default in Normal Operating Mode.

For programming the device, please proceed accordingly:

• Set device into Extended Mode (EN_PROG - “10000”) � now take commands for Extended Operating Mode

• “Soft-Write” settings into OTP (WRITE_OTP – “10111”) for checking impact of new parameters

• Read back new settings (READ_OTP – “01111”) � verifies the “soft-write” values

• Ensure that Vprog (8V-8.5V) is applied to PROG pin (Figure 1, switch position 3)

• Perform permanent writing (PROG_OTP – “11001”)

• Verify new settings by analog reading the fuse values

• Redirect PROG pin signal to voltmeter (Figure 1, switch position 1)

• Send READ_ANA – “01001” command � PROG pin becomes an output

• Four clock cycles represent the readback (analog voltage) of one fuse (pattern looks like Figure 3), starting with the

MSB.

A voltage of < 500mV indicates a correctly programmed bit (“1”) while a voltage level from 2.2V to 3.5V indicates an

unprogrammed bit (“0”). Any voltage level in between refer to incorrect programming!

3 Operating Conditions

Following table shows the most important programming parameters and its conditions.

PROG Operation

PARAMETER SYMBOL MIN MAX UNIT NOTE

Positive Supply Voltage VDD 4.5V 5.5V V

Negative Supply Voltage VSS 0V 0V V Ground =0V

Programming Voltage Vprog 8.0 8.5 V

Programming Current into PROG IPROG,prog 100 mA required current to program a single element

Programming ambient temperature Tamb,prog 0 85 °C During programming

Programming time tprog 2 4 us Timing is internally generated

Vp,prog 0.5 V
Analog readback voltage

Vp, unprog 2.2 3.5 V
During analog readback at PROG pin

The PolyFuse cell can be programmed only once

Table 3: Operating Conditions

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 5 of 14

4 Example source code

The following source code is taken from the AS5000-Programmer firmware. The microcontroller is a SiLabs C8051F342. It contains the communication over the 3-wire interface and the

PROG pin.

Five commands are needed for programming:

• twiRead

• twiWrite

• twiReadExtended

• twiWriteExtended

• twiReadExtendedAnalog

Buffer structure for AS5115/AS5215 (normal mode):

Number

of bits
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Bit

position
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit go2sleep gen_rst analog_sig OB_bypassed

Buffer structure for AS5115/AS5215 (extended mode):

Number

of bits
2 18 3 3 2 4 1 1 1 1 1 2 1 6

Bit

position
45..44 43..26 25..23 22..20 19..18 17..14 13 12 11 10 9 8. .7 6 5. .0

Bit fs ID fs fs fs fs fs fs Invert_chanel cm_sin cm_cos gain dc.offset Hall_bias

Note: All bits highlighted in blue are factory settings (fs) and must not be overwritten!

am

s A
G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 6 of 14

#define CLEAR_CS() do { TWI_CS = 0; } while(0)

#define SET_CS() do { TWI_CS = 1; } while(0)

#define CLEAR_CLK() do { TWI_CLK = 0; } while(0)

#define SET_CLK() do { TWI_CLK = 1; } while(0)

#define DIO_HIGH_IMP() do { TWI_DIO = 1; } while(0)

#define SET_DIO() do { TWI_DIO = 1; } while(0)

#define CLEAR_DIO() do { TWI_DIO = 0; } while(0)

#define VAL_DIO TWI_DIO

/**

 * These macros are for dealing witch the PROG line.

 */

#define PROG_HIGH_IMPED() VZAP_SWITCH_STATE = 0

#define PROG_LOW_IMPED() VZAP_SWITCH_STATE = 1

// Timings in microseconds.

// T = 4 us -> 250 kHz. That frequency is usable for all operations //

(RD/WRITE/PROG) except ANALOG READ

#define T_TWI_CLK_2 2

#define T_TWI_CLK_4 1

// These are the timings for the analog readback in milliseconds.

// 25 kHz is chosen here. As long we operate in three wire mode, the

frequency has no lower limit.

#define T_TWI_ARB_2 20

#define T_TWI_ARB_4 10

/**

 * Sets certain pins to certain states.

 * Set VZAP_SWITCH_STATE to 1 after a call to this function in order to

complete the TWI initialization.

 */

void initTWI()

{

 //TODO: #define this

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 7 of 14

 TWI_C2 = 0; // 3-wire mode

 TWI_DX = 1; // High Impedance

 DIO_HIGH_IMP();

 CLEAR_CS();

 CLEAR_CLK();

static void clkPulses(unsigned char num_pulses)

{

 do

 {

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 SET_CLK();

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 CLEAR_CLK();

 } while (--num_pulses);

}

static void clkPulsesAnalog(unsigned char num_pulses)

{

 do

 {

 delay_us(T_TWI_ARB_2);

 SET_CLK();

 delay_us(T_TWI_ARB_2);

 CLEAR_CLK();

 } while (--num_pulses);

}

/**

 * command phase.

 */

static void write(unsigned char* buffer, unsigned char num_bits)

{

 xdata unsigned char current_bit;

 for (current_bit = num_bits; current_bit; current_bit--)

 {

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 8 of 14

 unsigned char this_bit = ((buffer[(current_bit-1) >> 3]) >>

((current_bit-1) & 0x07)) & 0x01;

 if (this_bit)

 SET_DIO();

 else

 CLEAR_DIO();

 if (current_bit == 1)

 {

 // Last Bit has been written:

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 SET_CLK();

 delay_us(T_TWI_CLK_4); //twiDelay(400);

 DIO_HIGH_IMP();

 delay_us(T_TWI_CLK_4); //twiDelay(400);

 CLEAR_CLK();

 }

 else

 {

 clkPulses(1);

 }

 }

}

static void writeExtended(unsigned char* buffer, unsigned char num_bits)

{

 xdata unsigned char current_bit;

 //-- write Data --

 for (current_bit = num_bits; current_bit; current_bit--)

 {

 unsigned char this_bit = ((buffer[(current_bit-1) >> 3]) >>

((current_bit-1)&0x07)) & 0x01;

 if(this_bit)

 SET_DIO();

 else

 CLEAR_DIO();

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 9 of 14

 clkPulses(4);

 }

}

/**

 * WORKS.

 */

static void read(unsigned char* buffer, unsigned char num_bits)

{

 xdata unsigned char current_bit;

 xdata unsigned char temp;

 //-- read SSI Data --

 temp = 0;

 for (current_bit = num_bits; current_bit; current_bit--)

 {

 temp <<= 1;

 delay_us(T_TWI_CLK_2); // t7 //twiDelay(400);

 temp += (VAL_DIO) ? 1 : 0;

 SET_CLK();

 delay_us(T_TWI_CLK_2);

 CLEAR_CLK();

 // Save the bits to the buffer

 if (((current_bit - 1) & 0x07) == 0)

 {

 buffer[current_bit >> 3] = temp; // Normally it should be

[(current_bit-1) >> 3], but it has the same results.

 temp = 0;

 }

 }

}

static void readExtended(unsigned char* buffer, unsigned char num_bits)

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 10 of 14

{

 xdata unsigned char current_bit;

 xdata unsigned char temp;

 if(!num_bits) return;

 //-- read SSI Data --

 temp = 0;

 for(current_bit = num_bits; current_bit; current_bit--)

 {

 temp <<= 1;

 clkPulses(2);

 temp += (VAL_DIO) ? 1 : 0;

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 SET_CLK();

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 CLEAR_CLK();

 // This is the 4th clock pulse:

 clkPulses(1);

 // Save the bits read so far.

 if(((current_bit - 1) & 0x07) == 0)

 {

 buffer[(current_bit-1) >> 3] = temp; // Normally it should be

[(current_bit-1) >> 3], but current_bit >> 3 has the same results.

 temp = 0;

 }

 }

}

static void readAnalog(unsigned char* buffer, unsigned char num_bits)

{

 xdata unsigned char current_bit = 0;

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 11 of 14

 if (!num_bits) return;

 //twiDelay(400);

 //-- read SSI Data --

 for (current_bit = num_bits; current_bit; current_bit--)

 {

 clkPulsesAnalog(3);

 delay_us(T_TWI_ARB_2); //twiDelay(400);

 buffer[current_bit-1] = adcSample(0) >> 2; // Read analog voltage

from PROG

 SET_CLK();

 delay_us(T_TWI_ARB_2); //twiDelay(1500);

 CLEAR_CLK();

 }

}

/*

 * Interface Functions are following.

 */

// cmd_byte[(num_cmd_bits - 1)/8].((num_cmd_bits-1)%8) is written first

// bit ordering: buffer[0].0 equ bit 0 (read last)

// buffer[2].3 equ bit 19 (read earlier)

void twiRead(unsigned char *cmd_buffer, unsigned char num_cmd_bits,

unsigned char *data_buffer, unsigned char num_data_bits)

{

 SET_CS();

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 write(cmd_buffer, num_cmd_bits);

 DIO_HIGH_IMP(); // Already done be write, but done again here in case of

num_cmd_bits = 0

 read(data_buffer, num_data_bits);

 delay_us(T_TWI_CLK_2); //twiDelay(400);

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 12 of 14

 CLEAR_CS();

}

// cmd_byte[(num_cmd_bits - 1)/8].((num_cmd_bits-1)%8) is written first

// bit ordering: buffer[0].0 equ bit 0 (read last)

// buffer[2].3 equ bit 19 (read earlier)

void twiReadExtended(unsigned char *cmd_buffer, unsigned char

num_cmd_bits, unsigned char *data_buffer, unsigned char num_data_bits)

{

 SET_CS();

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 write(cmd_buffer, num_cmd_bits);

 DIO_HIGH_IMP();

 readExtended(data_buffer, num_data_bits);

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 CLEAR_CS();

}

// cmd_byte[(num_cmd_bits - 1)/8].((num_cmd_bits-1)%8) is written first

// bit ordering: buffer[0].0 equ bit 0 (written last)

// buffer[2].3 equ bit 19 (written earlier)

void twiWrite(unsigned char *cmd_buffer, unsigned char num_cmd_bits,

unsigned char *data_buffer, unsigned char num_data_bits)

{

 SET_CS();

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 write(cmd_buffer, num_cmd_bits);

 write(data_buffer, num_data_bits);

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 CLEAR_CS();

}

// cmd_byte[(num_cmd_bits - 1)/8].((num_cmd_bits-1)%8) is written first

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 13 of 14

// bit ordering: buffer[0].0 equ bit 0 (written last)

// buffer[2].3 equ bit 19 (written earlier)

void twiWriteExtended(unsigned char *cmd_buffer, unsigned char

num_cmd_bits, unsigned char *data_buffer, unsigned char num_data_bits)

{

 SET_CS();

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 write(cmd_buffer, num_cmd_bits);

 writeExtended(data_buffer, num_data_bits);

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 CLEAR_CS();

}

// cmd_byte[(num_cmd_bits - 1)/8].((num_cmd_bits-1)%8) is written first

// data_buffer will hold the 8 MSB of the ADC result

void twiReadExtendedAnalog(unsigned char *cmd_buffer, unsigned char

num_cmd_bits, unsigned char *data_buffer, unsigned char num_data_bits)

{

 SET_CS();

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 write(cmd_buffer, num_cmd_bits);

 DIO_HIGH_IMP();

 readAnalog(data_buffer, num_data_bits);

 delay_us(T_TWI_CLK_2); //twiDelay(400);

 CLEAR_CS();

}

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

AN5115-40 EASYZAPP OTP Programming

Revision 1.0, January 2010 www.austriamicrosystems.com/AS5115 Page 14 of 14

Revision History

Revision Date Description

1.0 January, 2010 initial revision

Copyrights

Copyright © 1997-2009, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe.

Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored,

or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its

Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the

information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems

AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this

product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for

use in normal commercial applications. Applications requiring extended temperature range, unusual environmental

requirements, or high reliability applications, such as military, medical life-support or lifesustaining equipment are specifically

not recommended without additional processing by austriamicrosystems AG for each application.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However,

austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal

injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential

damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No

obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or

other services.

Contact Information

Headquarters

austriamicrosystems AG

A-8141 Schloss Premstaetten, Austria

Tel: +43 (0) 3136 500 0

Fax: +43 (0) 3136 525 01

For Sales Offices, Distributors and Representatives, please visit:

http://www.austriamicrosystems.com

am
s A

G

Tec
hnica

l c
onten

t s
till

 va
lid

