Product Document

Published by ams OSRAM Group

austriamicrosystems AG

is now

ams AG

The technical content of this austriamicrosystems datasheet is still valid.

Contact information:

Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

austria*micro*systems

Datasheet, Confidential

AS3688

Flexible Lighting Management Unit (Charge Pump, DCDC Step Up, Current Sink, ADC, LDO)

1 General Description

The AS3688 is a highly-integrated CMOS Power and Lighting Management Unit to supply power to LCD-and cameramodules in mobile telephones, and other 1-cell Li+ or 3-cell NiMH powered devices.

The AS3688 incorporates one low-power, lowdropout regulator (LDO), one Step Up DC/DC Converter for white backlight LEDs, one high-power Charge Pump for camera flash LEDs, one Analogto-Digital Converter, support for up to 11 current sinks, a two wire serial interface, and control logic all onto a single device. Fully programmable.

The AS3688 is a successor to the austrimicrosystems AS3681 with several additional features (Charge Pump Automatic Up Switching, Extended timer features, autonomous logarithmic PWM dimming, LED pattern generator, DCDC step up overvoltage protection, improved Charge Pump and a fourth high current sink).

2 Key Features

New features of the AS3688 compared to the AS3681 are written in *boldface italics*.

- Programmable High-Performance Regulator
 - Low-Noise LDO (1.85 to 3.4V, 150mA)
 - Default off after Power-up
 - 3µA Quiescent Current in Standby
 - Programmable via Serial Interface
- High-Efficiency Step Up DC/DC Converter
- Up to 25V/50mA for White LEDs
- Programmable Output Voltage with
- External Resistors and Serial Interface
 Overvoltage Protection
- Overvorlage Protection
 0.10hm Shunt Resistor
- High-Efficiency High-Power Charge Pump
 - 1:1, 1:1.5, and 1:2 Mode
 - Automatic Up Switching (can be disabled and 1:2 mode can be blocked)
 - Output Current up to 400mA / 900mA pulsed
 - Efficiency up to 95%
 - Very Low effective Resistance (0.5Ω typ. 1Ω max. in 1:1 mode, 1.4Ω typ. 2Ω max. in 1:1.5)
 - Only 4 External Capacitors Required:
 2 x 1µF Flying Capacitors, 2 x 2.2µF
 2 x 1µF Flying Capacitors, 2 x 2.2µF
 - Supports LCD White Backlight LEDs,
 Camera Flash White LEDs, and Keypad Backlight LEDs
- Supports up to *12* Current Sinks
 - Four Programmable (8+1Bit) from: 0.6mA to 300mA
 - Two High Voltage Programmable (8-bit) from: 0.15mA to 38.25mA


- Three Programmable (*8-bit*) from: *0.15mA to 38.25mA* for RGB LEDs
- Three (AS3688B only; AS3688: One)
 Programmable (*8-bit*) from: *0.15mA to 38.25mA* for General Purpose
- Programmable Hardware Control (Strobe, and Preview or PWM)
- Selectively Enable/Disable Current Sinks
- Internal PWM Generation
- 8 Bit resolution
- Logarithmic up/down dimming
- Led Pattern Generator
- Autonomous driving for any LED
 10-bit Successive Approximation ADC
- 27µs Conversion Time
- Four Selectable Inputs: GPIO0-3
- Internal Temp. Measurement
- Support for Light Sensor, inluding a adjustable current source (0-15uA)
- Support for automatic LED function testing (open and shorted LEDs can be identified)
- Support for external Temperature Sensor for high current LED protection (CURR3x)
 - Strobe Timeout protection – Up to 1600ms
 - Three different timing
 - Three different timing modes
 TXMask function (reduce current during
- Strobe) selectable on pin GPIO1
- Four General Purpose Inputs/Outputs
 CPI on the second second
 - GPIO0-2 Input/Output, GPI only Input
 - Digital Input, Digital Output, and Tristate
 - Programmable Pull-Up, and Pull-Down
 GPI can be used as Flash Strobe
 - GPI can be used as Flash Strobe
 GPIO2 can be used for Preview Mode
 - GPIO2 can be used for Preview Mode
 GPIO0/2 can used for PWM input
- Negative or High-Voltage Charge Pump
 - Regulated Output Voltage, Programmable by Dual Resistors e.g. -6V, 10mA for OLED or ±15V, 5mA for TFT
 - ±5% Accuracy
- Standby LDO always on
 - Regulated 2.5V max. output 10mA
 - 3µA Quiescent Current
- Wide Battery Supply Range: 3.0 to 5.5V
- Two Wire Serial Interface Control
- Overcurrent and Thermal Protection
- Package QFN32 5x5mm

3 Application

Power- and lighting-management for mobile telephones and other 1-cell Li+ or 3-cell NiMH powered devices.

4 Block Diagram

Figure 1 – Application Diagram of the AS3688: Option shown: Step up DCDC converter, RGB Current Sinks

Revision History

Revision	Date	Owner	Description
1.0	30.3.2006	tje,ptr	 Fixed typo for vtuning range Corrected full scale value for current sinks from 38.5mA to 38.25mA (blockdiagram and one overview) Typical CP power consumption updated Reduced CP effective resistance in 1:2 mode, efficiency, Vcpout updated, quiescent current consumption Efficiency diagram of CP added Changed charge pump output capacitor to 1.5uF minimum Changed default state for curr_3x_on_cp to 0 Updated ASIC ID1 and ID2 register position Updated LED Testing procedure Updated Mode Switching Diagram (and->or) Register Map Table updated slow LED pattern (bit pattern_slow added) GPIO2 current source modified polarity control of external overtemp comparator added Increased standby current consumption by 2uA Added comment for preview_off_after strobe Removed cp_start_debounce Added comment not to use softdim_pattern for CURR1,CURR2 and CURR3x mode 'Other' Added comment for order of setting of pattern_data Changed to 'Datasheet' from 'Preliminary Datasheet'
1.1	23.6.2006	tje,ptr	 Update Application Diagram Included AS3688B version (for CURR42, CURR43) Improved Current Sink Matching to 8%; added comment for current sink voltage compliance for accuracy spec Updated minimum value C6,C7 Updated Vrsense* (DCDC step up) Replaced 'FuseReg*' by their actual default value TTOL +/-5° move from min/max to typical value and removed comment 'Design Target' Added comment about ADC Reference (V2_5) Improved voltage compliance of RGB current sinks to V(CPOUT) Removed CSP Version (use austriamicrosystems AS3689) Added ADC Temperature measurement coefficients Removed fuse I2C_Add (replace by comment about factory programmability) Added comment in LED test for reduced settling time for the DCDC step up converter Added ICP1_1.5 and ICP1_2 max. Added VPGIO rising max; and comment for VPOR_VBAT Added comment for LDO startup
1.1.1	7.7.2006	tje,ptr	 Added maximum value for IACTIVE Added maximum value for ILIMIT Reduced ICP1_1.5

Table of Contents

I Genera	I Description	1
2 Key Fea	atures	1
B Applica	tion	1
1 Block D	iagram	2
5 Charact	teristics	5
5.1 Ab	solute Maximum Ratings	5
5.2 Op	erating Conditions	5
5 Typical	Operating Characteristics	6
7 Detailed	Functional Description	8
7.1 An	alog LDO	8
7.1.1	LDO Registers	
7.2 Ste	p Up DC/DC Converter	
7.2.1	Feedback Selection	
7.2.2	Overvoltage Protection in Current Feedback Mode	
7.2.3	Voltage Feedback	
7.2.4	PCB Layout Tips	
7.2.5	Step up Registers	
7.3 Ch	arge Pump	
7.3.1	Charge Pump Mode Switching	
7.3.2	Soft Start	
7.3.3	Charge Pump Registers	
7.3.4	Usage of PCB Wire Inductance	
	rrent Sinks	
7.4.1	High Voltage Current Sinks CURR1, CURR2	
7.4.2	High Current Sinks CURR30, CURR31, CURR32, CURR33	
7.4.3	RGB Current Sinks RGB1, RGB2, RGB3 (VANA2,cpext)	
7.4.4	General Purpose Current Sinks CURR41, CURR42, CURR43	
7.4.5	LED Pattern Generator	
7.4.6	Overtemp comparator	
7.4.7	External chargepump	
7.4.8	PWM Generator	
-	neral Purpose Input / Outputs	
7.5.1	GPIO Characteristics	
7.5.2	GPIO Registers	
	D Test	
7.6.1	Function Testing for single LEDs connected to the Charge Pump	
7.6.2	Function Testing for LEDs connected to the Step Up DCDC Converter	
-	alog-To-Digital Converter	
	ADC Registers	
7.7.1	53	
	wer-On Reset	55
	nperature Supervision	
7.9.1	Temperature Supervision Registers	
-	rial Interface	
7.10.1	Serial Interface Features	
	Device Address Selection	
/ 10.2		
7.10.2 7.11 On	erating Modes	50
7.11 Op	erating Modes	
7.11 Op 3 Registe	rmap	60
7.11 Op 3 Registe 9 Externa	rmap I Components	60 62
7.11 Op 3 Registe 9 Externa 10 Pin	rmap I Components out and Packaging	60 62 64
7.11 Op 3 Registe 9 Externa 10 Pin 10.1 Pin	rmap I Components	60 62 64 64

Characteristics 5

5.1 Absolute Maximum Ratings

Stresses beyond those listed in Table 1 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Section 5 Electrical Characteristics is not implied.

Symbol	Parameter	Min	Max	Unit	Note
VIN_HV	15V Pins	-0.3	17	V	Applicable for high-voltage current sink pins CURR1 and CURR2.
Vin_mv	5V Pins	-0.3	7.0	V	Applicable for 5V pins VBAT1:VBAT3, VANA1, CURR30:CURR33; C1_N, C2_N, C1_P, C2_P, CPOUT; SENSE_N, SENSE_P, DCDC_FB, DCDC_GATE; CURR41:CURR43, RGB1,RGB2,RGB3(VANA2).
Vin_lv	3.3V Pins	-0.3	5.0	v	Applicable for 3.3V pins VDD_GPIO; GPIO0:GPIO2; GPI; serial interface pins CLK, DATA; V2_5; RBIAS, CREF
lin	Input Pin Current	-25	+25	mA	At 25°C, Norm: JEDEC 17
Tstrg	Storage Temperature Range	-55	125	°C	
	Humidity	5	85	%	Non-condensing
VESD	Electrostatic Discharge	-1000	1000	V	Norm: MIL 883 E Method 3015
D.	Total Power Dissipation		1	W	TA = 70 degrees, Tjunction max = 125deg
Pt	QFN32 5x5		2.5	W	TA = 70 degrees, Tjunction max = 125deg; for 800ms
TBODY	Peak Body Temperature		260	⁰C	T = 20 to 40s, in accordance with IPC/JEDEC J-STD 020C.

5.2 **Operating Conditions**

Table 2 – Operating Conditions

Symbol	Parameter	Min	Тур	Мах	Unit	Note
VHV	High Voltage			15.0	V	Applicable for high-voltage current sink pins CURR1 and CURR2.
VBAT	T Battery Voltage		3.6	5.5		Vват1:Vватз
Vgpio	PIO Periphery Supply Voltage			3.3	V	For GPIO and serial interface pins.
V2_5	Voltage on Pin V2_5	2.4	2.5	2.6	V	Internally generated
Тамв	AMB Operating Temperature Range		25	85	°C	
IACTIVE	Battery current		64	130	μΑ	Normal Operating current – see section 'Operating Modes' (excluding current of the enabled blocks, e.g. LDOs, DCDC); interface active

Symbol	Parameter	Min	Тур	Max	Unit	Note
ILOWPOWER	Low-Power Mode Current		10	18	μA	Current consumption in low-power mode; Ido_ana1_Ipo= 1, Ido_ana1_on=1 and V2_5 on, maximum LDO load current on Ido_ana1 = 5mA; interface active
ISTANDBY	Standby Mode Current		8	13		Current consumption in standby mode. Only 2.5V regulator on VDD_GPIO > 1.5V; interface active
Ishutdown	Shutdown Mode Current		0.1	3		VDD_GPIO < 0.3V; interface disabled and register are reset

Notes:

1. All device parameters are valid under all operating conditions unless otherwise specified

6 Typical Operating Characteristics

Figure 2 – DCDC Step Up Converter: Efficiency at VBAT = 3.8V

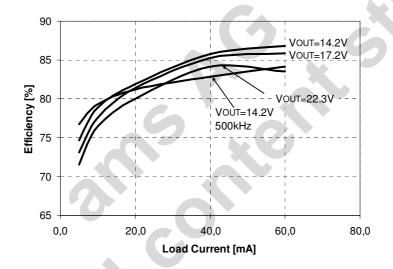


Figure 3 – Charge Pump: Efficiency vs. VBAT

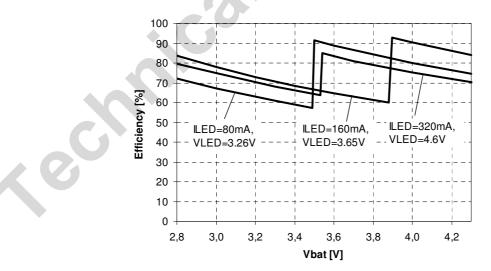
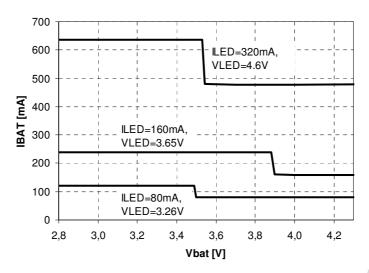



Figure 4 - Charge Pump: Battery Current vs. VBAT

Figure 5 - Current Sink CURR1 vs. V(CURR1)

Figure 6 - Current Sink CURR1 Protection Current vs. Voltage (I(CURR1)=0mA)

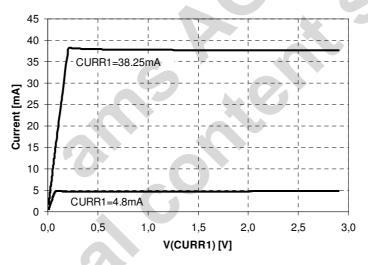
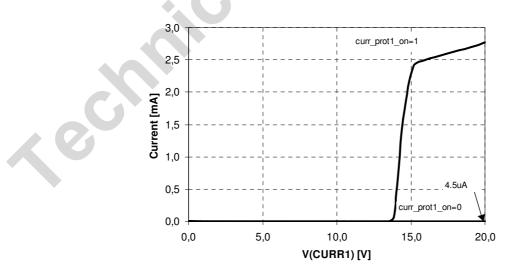



Figure 7 – Current Sink CURR30 vs. V(CURR30)

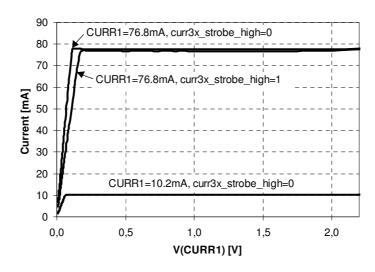
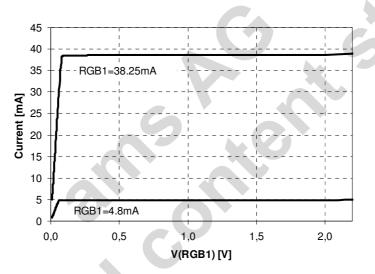
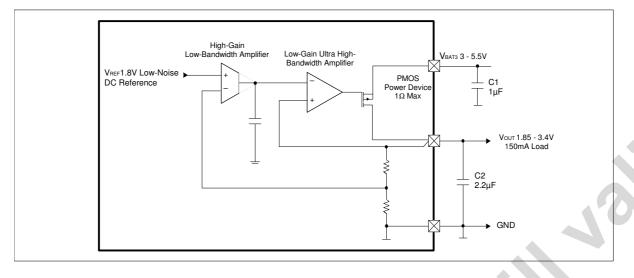



Figure 8 – RGB Current Sinks RGB1 vs. V(RGB1)

7 Detailed Functional Description

7.1 Analog LDO


The Analog LDOs (VANA1, VANA2) is designed to supply power to sensitive analog circuits like camera supply, LNAs, Transceivers, VCOs, and other critical RF components of cellular radios. Additionally, the Analog LDO is suitable for supplying power to audio devices or as a reference for A/D and D/A converters.

The design is optimized to deliver the best compromise between quiescent current and regulator performance for battery powered devices.

Stability is guaranteed with ceramic output capacitors (see Figure 3) of 1μ F ±20% (X5R) or 2.2 μ F +100/-50% (Z5U). The low ESR of these capacitors ensures low output impedance at high frequencies. Regulation performance is excellent even under low dropout conditions, when the power transistor has to operate in linear mode. Power supply rejection is high enough to suppress ripple on the battery caused by the PA in TDMA systems. The low noise performance allows direct connection of noise sensitive circuits without additional filtering networks. The low impedance of the power transistor enables the device to deliver up to 150mA even at nearly discharged batteries without any decrease in performance.

The LDO is off by default after startup (apply voltage on VDD_GPIO)

Figure 9 – Analog LDO Block Diagram

Symbol	Parameter	Min	Тур	Max	Unit	Note
VBAT	Supply Voltage Range	3.0	4	5.5	V	
Ron	On Resistance			1.0	Ω	@150mA, full operating temperature range
				150	mV	@150mA, Ido_ana1_Ipo = 0
Vdropout	Dropout Voltage			50	mV	@50mA, Ido_ana1_Ipo = 0
				500	mV	@5mA, Ido_ana1_Ipo = 1
		70			dB	f = 1kHz, lout=10mA,Vbat-Vana1,2=0.2
PSRR	Power Supply Rejection Ratio	55			dB	f = 10kHz lout=10mA,Vbat-Vana1,2=0.2
		40			dB	f = 100kHz lout=10mA,Vbat-Vana1,2=0.2
			50		μA	Without load
lOn	Supply Current		3			Without load, Ido_ana1_Ipo= 1 Ido_ana1 only
			150			With 150mA load
OFF	Shutdown Current			100	nA	Without load
Noise	Output noise			50	μVrm s	10Hz < f < 100kHz
t start	Startup Time			200	μs	
Vout_tol	Output Voltage Tolerance	-2		+2	%	ldo_ana1_lpo= 0
Vout	Output Voltage	1.85		2.85	V	Vbat > 3.0V
Vou	Output Voltage	1.85		3.4	V	Full Programmable Range
		-1		+1	mV	Static (1)
VLineReg	Line Regulation Ido ana1 Ipo= 0	-10		+10	mV	Transient; Slope: tr = 10µs (1)
		-3		+3	mV	Transient; Slope: tr = 30µs (VBAT-VANA1,2) >500mV, lout=
V	Load Regulation	-1		+1	mV	Static (2)
VLoadReg_H P	Load Regulation Ido_ana1_Ipo= 0	-20		+20	mV	Transient; Slope: tr = 10µs (3)
-		-8		+8	mV	Transient; Slope: tr = 30µs (3)

Table 3 – Analog LDOs Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Note
. (8)	LDO Current Limit Ido_ana1_Ipo = 0	300	450 ⁽⁷⁾	520 ⁽⁷⁾	mA	Pin VANA1. LDO acts as current source if the output current exceeds ILIMIT. (6)
Ilimit ⁽⁸⁾		300	450 ⁽⁷⁾	520 ⁽⁷⁾	mA	Pin VANA2
	LDO Current Limit Ido_ana1_Ipo= 1	4	8		mA	VBAT3-VANA>=0.2V
	Load Regulation Ido_ana1_Ipo= 1	-10		10	mV	Static (4)
		-50		50	mV	Transient; Slope: tr = 10µs (5)

Notes:

- 1. The Line Regulation in Table 3 is valid for whole output voltage (1.8 to 3.3V), if (VBAT-VANA1,2) >200mV.
- 2. The static Load Regulation in Table 3 is valid for whole output voltage (1.8 to 3.3V) and current range (0 to 100mA), if (VBAT-VANA1,2) >200mV.
- 3. The load condition for this value is a 1 to 100mA and 100 to 1mA steps.
- 4. The static load regulation in Table 3 is valid for the whole output voltage range (1.8 to 3.3V) and current range (0 to 5mA), if (VBAT-VANA1,2) >500mV.
- 5. The load condition for this value is a 0.05 to 5mA and 5 to 0.05mA steps.
- 6. The duration of operation in current limit is only dependent on the total power dissipation of the device. If this limit exceeded, the overtemperature detection might disable the device temporarily.
- 7. During startup of the LDO the current limit is half the value of ILIMIT
- 8. Not production tested guaranteed by design and laboratory verification

7.1.1 LDO Registers

Table 4 - Register definition for Analog LDO

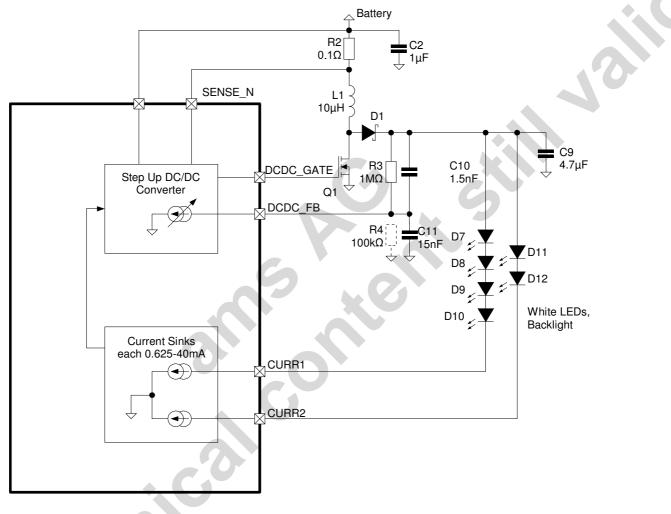
		Reg. Control							
Addr:	00	This register enables/disables the LDOs, Charge Pumps, Charge Pump LEDs, current sinks, the Step Up DC/DC Converter, and low-power mode.							
Bit	Bit Name	Default	Access	Description					
0	ldo_ana1_on	0	R/W	0 = Analog LDO is switched off 1 = Analog LDO is switched on					
1	ldo_ana2_on	0	R/W	0 = Analog LDO is switched off 1 = Analog LDO is switched on					
7	ldo_ana1_lpo	0	R/W	0 = Normal Operation 1 = Low-power mode; (Ido_ana1 only),current consumption is reduced by about 75 μ A. Reduced performance of LDO: max 5mA load, internal oscillator is switched off. The device will exit low-power mode automatically, if blocks requiring the oscillator are enabled.					
	20.								

Table 5 - Register definition for Analog LDO

Addr	Addr: 07h		Ldo ana1 voltage						
Addr.	0/11	This register sets the output voltage (VANA) for the LDO.							
Bit	Bit Name	Default	Access	Description					
4:0	ldo_ana1_voltage	00000b	R/W	Controls LDO voltage selection. 00000b = 1.85V. LSB = 50mV 11111b = 3.4V					

Table 6 - Register definition for Analog LDO

Addru	Addr: 08h		Ldo ana2 voltage							
Addr.	UOII	This register sets the output voltage (VANA) for the LDO.								
Bit	Bit Name	Default	Access	Description						
4:0	ldo_ana2_voltage	00000b	R/W	Controls LDO voltage selection. 00000b = 1.85V. LSB = 50mV 11111b = 3.4V						
5	ldo_ana2_pulld	0	R/W	Enable a pulldown for LDO ANA2 (pin RGB3). If RGB3 current sink or the external charge pump is used, leave this bit at default 0; if the LDO ANA2 is used in a system, set this bit always to 1 0 = pulldown is disabled 1 = pulldown is enabled; has only effect if LDO ANA2 is off (ldo_ana2_on = 0)						


.u e = puldown 1 = puldown off (ido_ar

7.2 Step Up DC/DC Converter

The DCDC step up converter is only available in the AS3688 version (not available for the AS3688B – marking 'AS3688B').

The Step Up DC/DC Converter is a high-efficiency current mode PWM regulator, providing output voltage up to 25V and a load current up to 50mA. A constant switching-frequency results in a low noise on the supply and output voltages.

Figure 10 - Step Up DCDC Converter Block Diagrammö Option: Current Feedback with Overvoltage protection

TBD: Final Datasheet: Add internal logic with overvoltage detection.

Symbol	Parameter	Min	TYP	Max	Unit	Note
IVDD	Quiescent Current		140		μΑ	Pulse skipping mode.
VFB1	Feedback Voltage for External Resistor Divider	1.20	1.25	1.30	V	For constant voltage control. step_up_res=1
VFB2	Feedback Voltage for Current Sink Regulation	0.4	0.5	0.6	V	on CURR1 or CURR2 in regulation. step_up_res=0
	Additional Tuning Current at Pin DCDC_FB and overvoltage protection	0		30	μA	Adjustable by software using Register DCDC control1 1μA step size
IDCDC_FB	Accuracy of Feedback Current	-4		4	%	VPROTECT = 1.25V + IDCDC_FB * R3 Design Target
Vrsense_max		55	72	93		e.g., 0.66A for 0.1Ω sense resistor.
Vrsense_max_st art	Current Limit Voltage at Rsense (R2)	27	36	47	mV	For fixed startup time of 500us
Vrsense_max_lc		33	47	61		If stepup_lowcur=1
RSW	Switch Resistance			1	Ω	ON-resistance of external switching transistor.
lload	Load Current	0		50	mA	At 15V output voltage.
lioau	Load Current	U		45	mA	At 17V output voltage.
fIN	Switching Frequency	0.9	1	1.1	MHz	Internally trimmed.
Cout	Output Capacitor	0.7	4.7		μF	Ceramic, ±20%. Use nominal 2.2µF capacitors to obtain at least 0.7µF under all conditions (voltage dependance of capacitors)
L	Inductor	7	10	13	μH	Use inductors with small C _{parasitic} (<100pF) to get high efficiency.
tMIN_ON	Minimum on Time	90	140	190	ns	
MDC	Maximum Duty Cycle	88	91		%	
Vrinolo	Voltage ripple >20kHz			160	mV	Cout=2.2uF,lout=045mA,
Vripple	Voltage ripple <20kHz			40	mV	Vbat=3.04.2V
Efficiency	Efficiency		85		%	lout=20mA,Vout=17V,Vbat=3.8V

To ensure soft startup of the dcdc converter, the overcurrent limits are reduced for a fixed time after enabling the dcdc converter. The total startup time for an output voltage of e.g. 25V is less than 2ms.

7.2.1 Feedback Selection

Register 12 (DCDC Control) selects the type of feedback for the Step Up DC/DC Converter.

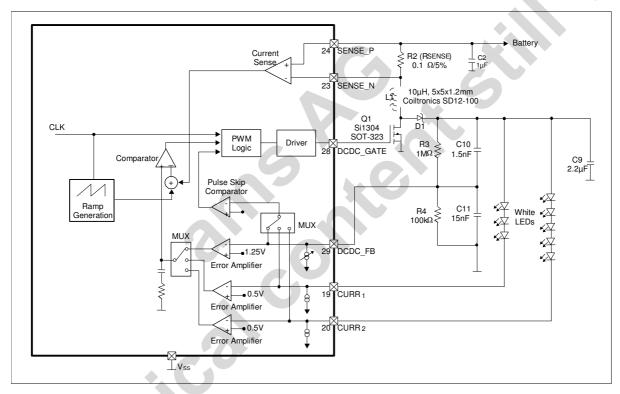
The feedback for the DC/DC converter can be selected either by current sinks CURR1 or CURR2 or by a voltage feedback at pin DCDC_FB. If the register bit step_up_fb_auto is set, the feedback path is automatically selected between CURR1 and CURR2 (the lowest voltage of these current sinks is used).

Setting step_up_fb = 01 enables feedback at pin 19 (CURR1); setting step_up_fb = 10 enables feedback at pin 20 (CURR2). The Step Up DC/DC Converter is regulated such that the required current at the feedback path can be supported. (Bit step_up_res should be set to 0 in this configuration)

Note: Always choose the path with the higher voltage drop as feedback to guarantee adequate supply for the other (unregulated) path or enable the register bit step_up_fb_auto.

7.2.2 Overvoltage Protection in Current Feedback Mode

The overvoltage protection in current feedback mode (step_up_fb = 01 or 10) works as follows: Only resistor R3 and C10 is soldered and R4 and C11 is omitted. An internal current source (sink) is used to generate a voltage drop across the resistor R3. If then the voltage on DCDC_FB is above 1.25V, the DCDC is momentarily disabled to avoid too high voltages on the output of the DCDC converter.


The protection voltage can be calculated according to the following formula:

VPROTECT = 1.25V + IDCDC_FB * R3

Notes:

- 1. The voltage on the pin DCDC_FB is limited by an internal protection diode to VBAT + one diode forward voltage (typ. 0.6V).
- 2. If the overvoltage protection is not used in current feedback mode, connect DCDC_FB to ground.

Figure 11 - Step Up DC/DC Converter Block Diagram; Option: Regulated Output Voltage, Feedback is at Pin DCDC_FB

7.2.3 Voltage Feedback

Setting bit step_up_fb = 00 enables voltage feedback at pin DCDC_FB..

The output voltage is regulated to a constant value, given by (Bit step_up_res should be set to 1 in this configuration)

$$U_{stepup out} = (R3+R4)/R4 \times 1.25 + I_{DCDC FB} \times R3$$

If R4 is not used, the output voltage is by (Bit step_up_res should be set to 0 in this configuration):

Where:

*U*_{stepup_out} = Step Up DC/DC Converter output voltage.

Datasheet, Confidential

R3 = Feedback resistor R3.

R4 = Feedback resistor R4.

 I_{DCDC_FB} = Tuning current at pin 29 (DCDC_FB); 0 to 31µA.

Table 8 – Voltage Feedback Example Values

I _{vtuning}	U _{stepup_out}	U _{stepup_out}
μΑ	R3 = $1M\Omega$, R4 not used	R3 = 500k Ω , R4 = 50k Ω
0	-	13.75
1	-	14.25
2	-	14.75
3	-	15.25
4	-	15.75
5	6.25	16.25
6	7.25	16.75
7	8.25	17.25
8	9.25	17.75
9	10.25	18.25
10	11.25	18.75
11	12.25	19.25
12	13.25	19.75
13	14.25	20.25
14	15.25	20.75
15	16.25	21.25
30	31.25	28.75
31	32.25	29.25

Caution: The voltage on CURR1 and CURR2 must not exceed 15V – see also section 'High Voltage Current Sinks'.

7.2.4 PCB Layout Tips

To ensure good EMC performance of the DCDC converter, keep its external power components C2, R2, L1, Q1, D1 and C9 close together. Connect the ground of C2, Q1 and C9 locally together and connect this path with a single via to the main ground plane. This ensures that local high-frequency currents will not flow to the battery.

7.2.5 Step up Registers

		Reg. Control							
Addr			his register enables/disables the LDOs, Charge Pumps, Charge Pump LEDs, current hks, the Step Up DC/DC Converter						
Bit	Bit Name	Default	Access	Description					
3	step_up_on	0	R/W	Enable the step up converter 0b = Disable the Step Up DC/DC Converter. 1b = Enable the Step Up DC/DC Converter.					

Addr	016	DCDC Contro	OCDC Control 1				
Addr	. 210	This register controls the Step Up DC/DC Converter.					
Bit	Bit Name	Default	Default Access Description				
0	step_up_frequ	0	R/W	Defines the clock frequency of the Step Up DC/DC Converter. 0 = 1 MHz 1 = 500 kHz			
2:1	step_up_fb	00	R/W	Controls the feedback source if step_up_fb_auto = 0 00 = DCDC_FB enabled (external resistor divider). Set step_up_fb=00 (DCDC_FB), if external PWM is enabled for CURR1 or CURR2 01 = CURR1 feedback enabled (feedback via white LEDs. 10 = CURR2 feedback enabled (feedback via white LEDs. 11 = Reserved.			
7:3	step_up_vtuning	00000	R/W	Defines the tuning current at pin DCDC_FB. $00000 = 0 \ \mu A$ $00001 = 1 \ \mu A$ $00010 = 2 \ \mu A$ $10000 = 15 \ \mu A$ $11111 = 31 \ \mu A$			

		DCDC Control 2 This register controls the Step Up DC/DC Converter and low-voltage current sinks CURR3x.				
Addr	: 22h					
Bit	Bit Name	Default	Access	Description		
0	step_up_res	0	R/W	 Gain selection for Step Up DC/DC Converter. 0 = Select 0 if Step Up DC/DC Converter is used with current feedback (CURR1, CURR2) or if DCDC_FB is used with current feedback only – only R1, C1 connected 1 = Select 1 if DCDC_FB is used with external resistor divider (2 resistors). 		
1	skip_fast	0	R/W	Step Up DC/DC Converter output voltage at low loads, when pulse skipping is active. 0 = Accurate output voltage, more ripple. 1 = Elevated output voltage, less ripple.		
2	stepup_prot	1	R/W	 Step Up DC/DC Converter protection. 0 = No overvoltage protection. 1 = Overvoltage protection on pin DCDC_FB enabled voltage limitation =1.25V on DCDC_FB 		

		DCDC Contr	ol 2			
Addr	: 22h	This register controls the Step Up DC/DC Converter and low-voltage current sinks CURR3x.				
Bit	Bit Name	me Default Access Description				
з	stepup_lowcur	1	R/W	Step Up DC/DC Converter coil current limit. 0 = .Normal current limit 1 = Current limit reduced by approx. 33%		
4	curr1_prot_on	0	R/W	0 = No overvoltage protection 1 = Pull down current on CURR1 switched on, if voltage on CURR1 exceeds 13.75V, and step_up_on=1		
5	curr2_prot_on	0	R/W	0 = No overvoltage protection 1 = Pull down current on CURR1 switched on, if voltage on CURR1 exceeds 13.75V, and step_up_on=1		
7	step_up_fb_auto	0	R/W	0 = step_up_fb select the feedback of the DCDC converter 1 = The feedback is automatically chosen within the current sinks CURR1 and CURR2 (never DCDC_FB). Only those are used for this selection, which are enabled (currX_mode must not be 00) and not connected to the charge pump (currX_on_cp must be 0). Don't use automatic feedback selection together with external PWM for CURR1 or CURR2.		

7.3 Charge Pump

The Charge Pump uses two external flying capacitors C6, C7 to generate output voltages higher than the battery voltage.

There are three different operating modes of the charge pump itself:

- 1:1 Bypass Mode
 - Battery input and output are connected by a low-impedance switch (0.5Ω) ;
 - battery current = output current.
- 1:1.5 Mode
 - The output voltage is up to 1.5 times the battery voltage (without load), but is limited to VCPOUTmax all the time
 - battery current = 1.5 times output current.
- 1:2 Mode
 - The output voltage is up to 2 times the battery voltage (without load), but is limited to VCPOUTmax all the time
 - _
 - battery current = 2 times output current

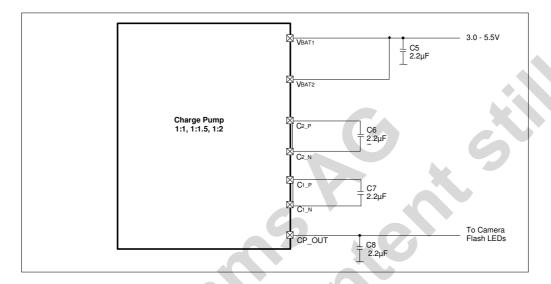
As the battery voltage decreases, the Charge Pump must be switched from 1:1 mode to 1:1.5 mode and eventually in 1:2 mode in order to provide enough supply for the current sinks. Depending on the actual current the mode with best overall efficiency can be automatically or manually selected:

Examples:

- Battery voltage = 3.7V, LED dropout voltage = 3.5V. The 1:1 mode will be selected and there is 100mV drop on the current sink and on the Charge Pump switch. Efficiency 95%.
- Battery voltage = 3.5V, LED dropout voltage = 3.5V. The 1:1.5 mode will be selected and there is 1.5V drop on the current sink and 250mV on the Charge Pump. Efficiency 66%.
- Battery voltage = 3.8V, LED dropout voltage = 4.5V (Camera Flash). The 1:2 mode can be selected and there
 is 600mV drop on the current sink and 2.5V on the Charge Pump. Efficiency 60%.

The efficiency is dependent on the LED forward voltage given by:

Eff=(V_LED*lout)/(Uin*lin)


The charge pump mode switching can be done manually or automatically with the following possible software settings:

- Automatic up all modes allowed (1:1, 1:1.5, 1:2)
 Start with 1:1 mode
 - Switch up automatically 1:1 to 1:1.5 to 1:2
 - Automatic up, but only 1:1 and 1:1.5 allowed
 - Start with 1:1 mode
 - Switch up automatically only from 1:1 to 1:1.5 mode; 1:2 mode is not used
- Manual

.

- Set modes 1:1, 1:1.5, 1:2 by software

Figure 12 - Charge Pump Pin Connections

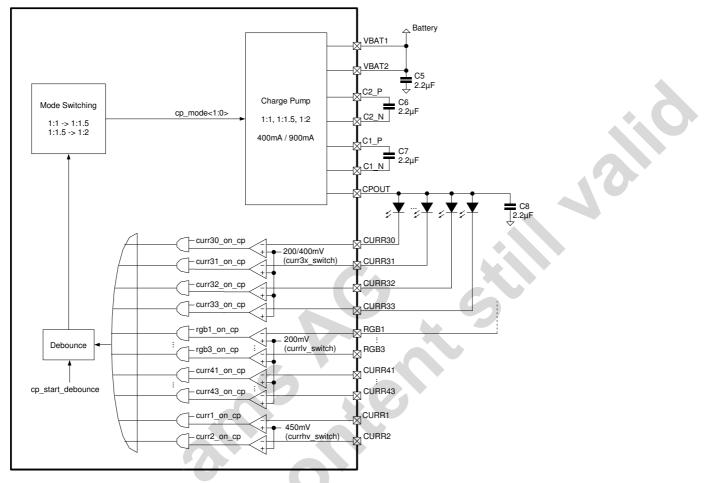
The Charge Pump requires the external components listed in the following table:

Symbol	Parameter	Min	Тур	Max	Unit	Note
C6, C7	External Flying Capacitor (2x)	0.65 (@3.2V, 1MHz)	2.2		μF	Ceramic low-ESR capacitor between pins C1_P and C1_N, and between pins C2_P and C2_N. Use nominal 2.2µF capacitors (size 0603)
C5	Supply Buffer Capacitor	1.0 (@3.3V)	2.2		μF	Ceramic low-ESR capacitor between pins CP_OUT and VSS, pins VBAT and VBAT2 (in parallel) and VSS. Use nominal 2.2µF capacitors (size 0603)
C8	External Storage Capacitor	1.5	2.2 or 4.7		μF	Ceramic low-ESR capacitor between pins CP_OUT and VSS, pins VBAT and VBAT2 (in parallel) and VSS. Use nominal 2.2 μ F or 4.7 μ F capacitors (size 0603)

Note:

- 1.) The connections of the external capacitors C5, C6, C7 and C8 should be kept as short as possible.
- 2.) The maximum voltage on the flying capacitors C6 and C7 is VBAT

Symbol	Parameter	Min	Тур	Max	Unit	Note
ICPOUT_Pulsed	Output Current Pulsed	0.0		900	mA	300ms pulse width, 10% duty cycle max.
ICPOUT	Output Current Continuous	0.0		400	mA	
VCPOUTmax	Output Voltage			5.6	V	Internally limited, Including output ripple
η	Efficiency	55		90	%	Including current sink loss; ICPOUT < 400mA.
ICP1_1.5	Power Consumption without Load		8.4	13	mA	1:1.5 Mode
ICP1_2	fclk = 1 MHz		9.5	18	IIIA	1:2 Mode
Rcp1_1	Effective Charge Pump		0.4	1.0		1:1 Mode; VBAT >= 3.5V
Rcp1_1.5	Output Resistance (Open Loop, fclk =		1.4	2.0		1:1.5 Mode; Vbat >= 3.3V ; Tjunction<85℃
Rcp1_2	1MHz)		1.8	2.5		1:1.2 Mode; VBAT >= 3.1V
fclk Accuracy	Accuracy of Clock Frequency	-10	(10	%	
currlv_switch	RGB1:RGB3 and CURR41:CURR42 minumum voltage			0.2	v	
currhv_switch	CURR1, CURR2 minumum voltage	6		0.45	V	If the voltage drops below this threshold, the charge pump will use
ourr2x owitch	CURR30:CURR33 minumum voltage 0-160mA range			0.2	v	the next available mode (1:1 -> 1:1.5 or 1:1.5 -> 1:2)
curr3x_switch	CURR30:CURR33 minumum voltage >160mA range			0.4	v	
t _{deb}	CP automatic up- switching debounce time	C	240		µsec	


Table 10 – Charge Pump Characteristics

7.3.1 Charge Pump Mode Switching

If automatic mode switching is enabled (cp_mode_switching = 00 or cp_mode_switching = 01) the charge pump monitors the current sinks, which are connected via a led to the output CP_OUT. To identify these current sources (sinks), the registers cp_mode_switch1 and cp_mode_switch2 (register bits curr30_on_cp ... curr33_on_cp, rgb1_on_cp ... rgb3_on_cp, curr1_on_cp, curr2_on_cp, curr41_on_cp ... curr43_on_cp) should be setup before starting the charge pump (cp_on = 1). If any of the voltage on these current sources drops below the threshold (currlv_switch, currhv_switch, curr3x_switch), the next higher mode is selected after the debounce time.

To avoid switching into 1:2 mode (battery current = 2 times output current), set cp_mode_switching = 10. If the currX_on_cp=0 and the according current sink is connected to the chargepump, the current sink will be functional, but there is no up switching of the chargepump, if the voltage compliance is too low for the current sink to supply the specified current.

Figure 13 – Automatic Mode Switching

7.3.2 Soft Start

An implemented soft start mechanism reduces the inrush current. Battery current is smoothed when switching the charge pump on and also at each switching condition. This precaution reduces electromagnetic radiation significantly.

7.3.3 Charge Pump Registers

		Reg. Control		
Addr		This register e sinks, the Ste		les the LDOs, Charge Pumps, Charge Pump LEDs, current Converter.
Bit	Bit Name	Default	Access	Description
2	cp_on	0	R/W	 0 = Set Charge Pump into 1:1 mode (off state) unless cp_auto_on is set 1 = Enable manual or automatic mode switching – see register CP Control for actual settings

Addr	. 00h	CP Control				
Addr	. 2311	This register controls the Charge Pump.				
Bit	Bit Name	Default	Access	Description		
0	cp_clk	0	R/W	Clock frequency selection. 0 = 1 MHz 1 = 500 kHz		
2:1	cp_mode	00b	R/W	Charge Pump mode (in manual mode sets this mode, in automatic mode reports the actual mode used) 00 = 1:1 mode 01 = 1:1.5 mode 10 = 1:2 mode 11 = NA Note:Direct switching from 1:1.5 mode into 1:2 in manual mode and vice versa is not allowed. Always switch over 1:1 mode.		
4:3	cp_mode_switching	00b	R/W	Set the mode switching algorithm: 00 = Automatic Mode switching; 1:1, 1:1.5 and 1:2 allowed ¹ 01 = Automatic Mode switching; only 1:1 and 1:1.5 allowed ¹ 10 = Manual Mode switching; register cp_mode defines the actual charge pump mode used 11 = reserved		
6	cp_auto_on	0	R/W	0 = Charge Pump is switched on/off with cp _on 1 = Charge Pump is automatically switched on if a current sink, which is connected to the charge pump (defined by registers CP Mode Switch 1 & 2) is switched on		

Note :

1. Don't use automatic mode switching together with external PWM for the current sources connceted to the charge pump with less than 500us high time.

		CP Mode Sw	itch 1	
Addr	: 24h			are connected (via leds) to the charge pump; if set to '1' the (sink) is used for automatic mode selection of the charge
Bit Bit Name		Default	Access	Description
0	curr30_on_cp	0	R/W	0 = current Sink CURR30 is not connected to charge pump 1 = current sink CURR30 is connected to charge pump
1	curr31_on_cp	0	R/W	0 = current Sink CURR31 is not connected to charge pump 1 = current sink CURR31 is connected to charge pump
2	curr32_on_cp	0	R/W	0 = current Sink CURR32 is not connected to charge pump 1 = current sink CURR32 is connected to charge pump
3	curr33_on_cp	0	R/W	0 = current Sink CURR33 is not connected to charge pump 1 = current sink CURR33 is connected to charge pump
4	rgb1_on_cp	0	R/W	0 = current Sink RGB1 is not connected to charge pump 1 = current sink RGB1 is connected to charge pump
5	rgb2_on_cp	0	R/W	0 = current Sink RGB2 is not connected to charge pump 1 = current sink RGB2 is connected to charge pump
6	rgb3_on_cp	0	R/W	0 = current Sink RGB3 is not connected to charge pump 1 = current sink RGB3 is connected to charge pump
7				NA

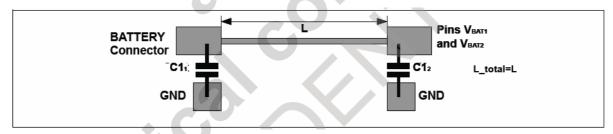
		CP Mode Switch 2					
Addr:	2511	Setup which current sinks are connected (via leds) to the charge pump; if set to '1' th correspond current source (sink) is used for automatic mode selection of the charge pump					
Bit	Bit Name	Default	Access	Description			
0	curr1_on_cp	0	R/W	0 = current Sink CURR1 is not connected to charge pump 1 = current sink CURR1 is connected to charge pump			
1	curr2_on_cp	0	R/W	0 = current Sink CURR2 is not connected to charge pump 1 = current sink CURR2 is connected to charge pump			
2	curr41_on_cp	0	R/W	0 = current Sink CURR41 is not connected to charge pump 1 = current sink CURR41 is connected to charge pump			
3	curr42_on_cp	0	R/W	0 = current Sink CURR42 is not connected to charge pump 1 = current sink CURR42 is connected to charge pump			
4	curr43_on_cp	0	R/W	0 = current Sink CURR43 is not connected to charge pump 1 = current sink CURR43 is connected to charge pump			

		Curr low vol	tage status 1				
Addr: 2Ah		Indicates the low voltage status of the current sinks. If the currX_low_v bit is set, the voltage on the current sink is too low, to drive the selected output current					
Bit	Bit Name	Default	Access	Description			
0	curr30_low_v	NA	R	0 = voltage of current Sink CURR30 >curr3x_switch 1 = voltage of current Sink CURR30 <curr3x_switch< td=""></curr3x_switch<>			
1	curr31_low_v	NA	R	0 = voltage of current Sink CURR31 >curr3x_switch 1 = voltage of current Sink CURR31 <curr3x_switch< td=""></curr3x_switch<>			
2	curr32_low_v	NA	R	0 = voltage of current Sink CURR32 >curr3x_switch 1 = voltage of current Sink CURR32 <curr3x_switch< td=""></curr3x_switch<>			
3	curr33_low_v	NA	R	0 = voltage of current Sink CURR33 >curr3x_switch 1 = voltage of current Sink CURR33 <curr3x_switch< td=""></curr3x_switch<>			
4	rgb1_low_v	NA	R	0 = voltage of current Sink RGB1 >currlv_switch 1 = voltage of current Sink RGB1 <currlv_switch< td=""></currlv_switch<>			
5	rgb2_low_v	NA	R	0 = voltage of current Sink RGB2 >currlv_switch 1 = voltage of current Sink RGB2 <currlv_switch< td=""></currlv_switch<>			
6	rgb3_low_v	NA	R	0 = voltage of current Sink RGB3 >currlv_switch 1 = voltage of current Sink RGB31 <currlv_switch< td=""></currlv_switch<>			
7				NA			
	2011						
	0						

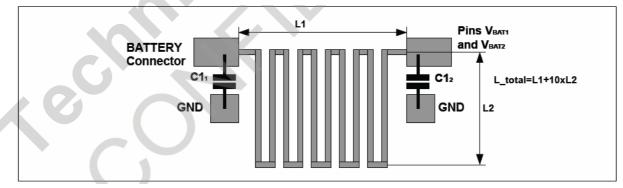
		Curr low voltage status 2							
Addr	: 2Bh	Indicates the low voltage status of the current sinks. If the currX_low_v bit is set, the							
		voltage on the	e current sink i	s too low, to drive the selected output current					
Bit Bit Name		Default	Access	Description					
0	curr1_low_v	NA	R	0 = voltage of current Sink CURR1 >currhv_switch 1 = voltage of current Sink CURR1 <currhv_switch< td=""></currhv_switch<>					
1	curr2_low_v	NA	R	0 = voltage of current Sink CURR2 >currhv_switch 1 = voltage of current Sink CURR2 <currhv_switch< td=""></currhv_switch<>					
2	curr41_low_v	NA	R	0 = voltage of current Sink CURR41 >currlv_switch 1 = voltage of current Sink CURR41 <currlv_switch< td=""></currlv_switch<>					
3	curr42_low_v	NA	R	0 = voltage of current Sink CURR42 >currlv_switch 1 = voltage of current Sink CURR42 <currlv_switch< td=""></currlv_switch<>					
4	curr43_low_v	NA	R	0 = voltage of current Sink CURR43 >currlv_switch 1 = voltage of current Sink CURR43 <currlv_switch< td=""></currlv_switch<>					

7.3.4 Usage of PCB Wire Inductance

The inductance between the battery and pins VBAT1 and VBAT2 can be used as a filter to reduce disturbance on the battery. Instead of using one capacitor (C5) it is recommended to split C5 into C51 and C52 with the capacitance equal:


$$C51 = C52 = 1/2 \times C5$$

It is recommended to apply a minimum of 20nH (maximum 200nH) with low impedance. This inductance can be realized on the PCB without any discrete coil. Assuming that a 1mm signal line corresponds to approximately 1nH (valid if the length (L) is significantly bigger than the width (W) of the line (L/W <10)), a line length of:


20mm < L < 200mm

is recommended. The shape of the line is not important.

Figure 14 – PCB Wire Inductance Example 1 (TBD: TODO: replace C1 by C5)

7.4 Current Sinks

The AS3688 contains general purpose current sinks intended to control backlights, buzzers, and vibrators. All current sinks have an integrated protection against overvoltage.

CURR1 and CURR2 is also used as feedback for the Step Up DC/DC Converter (regulated to 0.5V in this configuration).

- Current sinks CURR1 and CURR2 are high-voltage compliant (15V) current sinks, used e.g., for series of white LEDs
- Current sinks CURR3x (CURR30, CURR31, CURR32 and CURR33) are parallel 5V, high-current current sinks, used e.g., for a photocamera flash LED.
- Current sinks RGB1, RGB2, and RGB3 are general purpose current sinks e.g. for a fun LED (the pins for these current sinks are shared with the OLED charge pump)
- Current sinks CURR4x (CURR41, CURR42, and CURR43) are general purpose current sinks optionally used in place of the Step Up DC/DC Converter, e.g. for white LEDs.

As the current sinks consume current whenever enabled (currX_mode not equal 'off'), do always disable the current sinks by setting their currX_mode register to 'off' (and not by setting currX_current to 0 and not by setting pwm_code to 0 if currX_mode = 'PWM controlled').

Current	Dim	Max.	Max.	Reso	ution	Software	Hardware On/Off	Alternate Function
Sink	Pin	Voltage (V)	Current (mA)	(Bits)	(mA)	Current Control	Control	Alternate Function
CURR1	TBD						LED Pattern;	
CURR2	TBD	15.0	38.25	8	0.15	Separate	PWM at GPIO0/2;	
001112							Internal PWM	
CURR30	TBD						Flash LED Strobe (GPI) & Preview (GPIO2);	
CURR31	TBD		153	8		0.6 Combined in Strobe/Preview or Separated	TXMask (GPIO1);	N/A
CURR32	TBD		(300 for	(+1 for	0.6		PWM at GPIO0/2;	
CONH32	тыр		strobe)	strobe)			Internal PWM;	
CURR33	TBD	VBAT				ocparated	Ext-Overtemp on GPIO2	
		(5.5V)					LED Pattern	
RGB1	TBD						LED Pattern;	OLED Charge Pump
RGB2	TBD		38.25	8	0.15	Separate	PWM at GPIO0/2;	RGB3: LDO VANA2
RGB3	TBD						Internal PWM	
CURR41	TBD						LED Pattern;	Step Up DC/DC
CURR42	TBD		38.25	8	0.15	Separate	PWM at GPIO0/2;	Converter (feedback at
CURR43	TBD						Internal PWM	CURR1 or CURR2)

Table 11 - Current Sink Function Overview

7.4.1 High Voltage Current Sinks CURR1, CURR2

The high voltage current sinks have a resolution of 8 bits. Additionally an internal protection circuit monitors with a voltage divider (max $3\mu A @ 13V$) the voltage on CURR1 and CURR2 and increases the current in off state in case of overvoltage. See section 'Typical Operating Characteristics' Figure 'Current Sink CURR1 and CURR2 Protection Current'. This shows the protection current versus applied voltage depending on the register setting currX_prot_on (X=1 or 2).

External PWM control of these current sinks is possible and can be enabled by software (Input pin GPIO0).

6

Datasheet, Confidential

Symbol	Parameter	Min	Тур	Max	Unit	Note
I _{BIT7}	Current sink if Bit7 = 1		19.2			
I _{BIT6}	Current sink if Bit6 = 1		9.6			
I _{BIT5}	Current sink if Bit5 = 1		4.8			
I _{BIT4}	Current sink if Bit4 = 1		2.4		mA	For V(CURRx) > 0.45V
I _{BIT3}	Current sink if Bit3 = 1		1.2		ШA	
I _{BIT2}	Current sink if Bit2 = 1		0.6			.0
I _{BIT1}	Current sink if Bit1 = 1		0.3			
I _{BIT0}	Current sink if Bit0 = 1		0.15			
Δm	matching Accuracy	-8		+8	%	CURR1,CURR2; full scale
Δ	absolute Accuracy	-15		+15	%	
Curr1 – Curr2	Voltage compliance	0.45		15	v	6
Ov_prot_ 13V	Overvoltage Protection of current sink CURR1,2			3.0	μA	At 13V, independent of curr1_prot_on or curr2_prot_on
Ov_prot_ 15V	Overvoltage Protection of current sink CURR1,2	0.8	2	4.0	mA	At 15V, step_up_on=1, curr1_prot_on=1 for CURR1, curr2_prot_on=1 for CURR2

Table 12 - HV - Current Sinks Characteristics

7.4.1.1 High Voltage Current Sinks CURR1, CURR2 Registers

Addr: 09h		Curr1 curren	t			
Addr	. 090	This register controls the High voltage current sink current.				
Bit	Bit Name	Default	Access	Description		
7:0	curr1_current	0	R/W	Defines current into Current sink curr1 00h = 0 mA 01h = 0.15 mA FFh = 38.25 mA		

	Addr: 0Ah		Curr2 current				
ľ			This register controls the High voltage current sink current.				
	Bit	Bit Name	Default	Access	Description		
	7:0	curr2_current	0		Defines current into Current sink curr1 00h = 0 mA 01h = 0.15 mA FFh = 38.25 mA		

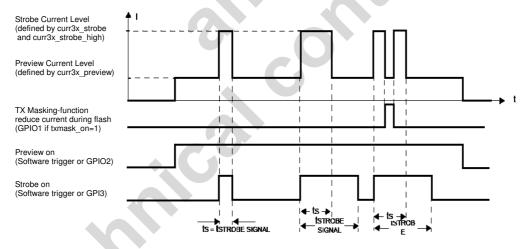
		curr12 control						
Addr	: 01h	This register select the mode of the current sinkscontrols High voltage current sink						
		current.						
Bit	Bit Name	Default	Access	Description				
				Select the mode of the current sink curr1				
				00b = off				
1:0	curr1_mode	0	R/W	01b = on				
				10b = PWM controlled				
				11b = LED pattern controlled; do not use softdim_pattern=1				
				Select the mode of the current sink curr2				
				00b = off				
3:2	curr2_mode	0	R/W	01b = on				
				10b = PWM controlled				
				11b = LED pattern controlled; do not use softdim_pattern=1				

		DCDC Contr	ol 2	
Addr	: 22h	This register o CURR3x.	controls the	Step Up DC/DC Converter and low-voltage current sinks
Bit	Bit Name	Default	Access	Description
0	step_up_res	0	R/W	 Gain selection for Step Up DC/DC Converter. 0 = Select 0 if Step Up DC/DC Converter is used with current feedback (CURR1, CURR2) or if DCDC_FB is used with current feedback only – only R1, C1 connected 1 = Select 1 if DCDC_FB is used with external resistor divider (2 resistors).
1	skip_fast	0	R/W	 Step Up DC/DC Converter output voltage at low loads, when pulse skipping is active. 0 = Accurate output voltage, more ripple. 1 = Elevated output voltage, less ripple.
2	stepup_prot	2	R/W	Step Up DC/DC Converter protection. 0 = No overvoltage protection. 1 = Overvoltage protection on pin DCDC_FB enabled voltage limitation =1.25V on DCDC_FB
3	stepup_lowcur	1	R/W	Step Up DC/DC Converter coil current limit. 0 = .Normal current limit 1 = Current limit reduced by approx. 33%
4	curr1_prot_on	0	R/W	0 = No overvoltage protection 1 = Pull down current on CURR1 switched on, if voltage on CURR1 exceeds 13.75V, and step_up_on=1
5	curr2_prot_on	0	R/W	0 = No overvoltage protection 1 = Pull down current on CURR2 switched on, if voltage exceeds on CURR2 13.75V, and step_up_on=1
7	step_up_fb_auto	0	R/W	0 = step_up_fb select the feedback of the DCDC converter 1 = The feedback is automatically chosen within the current sinks CURR1 and CURR2 (never DCDC_FB). Only those are used for this selection, which are enabled (currX_mode must not be 00) and not connected to the charge pump (currX_on_cp must be 0).

7.4.2 High Current Sinks CURR30, CURR31, CURR32, CURR33

These current sinks have a preview and strobe setting. The preview and strobe can be controlled by software (register bit) or GPIO2 can be programmed to enter preview mode (polarity programmable) and GPI can be programmed to enter strobe mode (polarity programmable).

In strobe mode, a timeout timer protects the flash leds with a settable timeout of 100ms to 1600ms. This timer has the following modes:


- Flash time defined by timeout timer (Ts) independent of strobe signal (Mode 1)
- Flash time limited to timeout or end of strobe pulse (Mode 2)
- Flash time identical to strobe pulse time (Mode 3)

GPIO1 can be programmed to be used as TXMasking function. This function quickly reduces the current during strobing from strobe levels to preview levels. The timeout counter is not affected by this input.

Figure 16 - Flash Mode 1 - Flash time defined by timeout timer (Ts) independent of strobe signal (Strobe on)

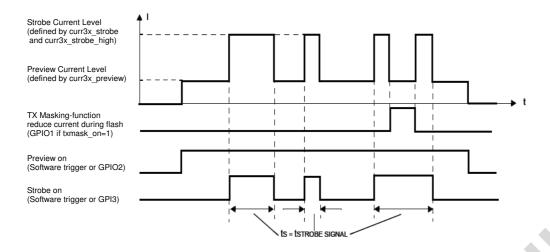

Strobe Current Level (defined by curr3x_strobe and curr3x_strobe_high) Preview Current Level (defined by curr3x_preview)	13
TX Masking-function reduce current during flash (GPIO1 if txmask_on=1)	
Preview on (Software trigger or GPIO2)	
Strobe on (Software trigger or GPI3)	

Figure 17 - Flash Mode 2 - Flash time limited to timeout or end of strobe pulse

Datasheet, Confidential

Figure 18 – Flash Mode 3 – Flash time identical to strobe pulse time

Table 13 _	High Current	Sinke CLIBBS	0 31 32 33 6	Paramotore
		SILIKS CURRS	00,31,3∠,33 r	alameters

Symbol	Parameter	Min	Тур	Max	Unit	Note
I _{BIT7}	Current sink if Bit7 = 1		76.8			6
I _{BIT6}	Current sink if Bit6 = 1		38.4			
I _{BIT5}	Current sink if Bit5 = 1		19.2			
I _{BIT4}	Current sink if Bit4 = 1	6	9.6		mA	For V(CURRx) > 0.2 / 0.4V
I _{BIT3}	Current sink if Bit3 = 1		4.8	N C		1010(00000) > 0.270.40
I _{BIT2}	Current sink if Bit2 = 1		2.4			
I _{BIT1}	Current sink if Bit1 = 1		1.2			
I _{BIT0}	Current sink if Bit0 = 1		0.6			
Δ	absolute Accuracy	-15		+15	%	All Current sinks; V(CURR3x) < VBAT-1.0V
VCURR3X	CURR30,31,32,33 Voltage	0.2		CPOUT	V	0-150mA range
Vcurr3x_h p	Compliance Range	0.4		CPOUT	V	150mA-300mA range
			•	•	•	

7.4.2.1 High Current Sinks CURR3x Registers

	Addr: 12h		Curr3 control1				
^			This register select the modes of the current sinks3033 current.				
	Bit Bit Name		Default	Access	Description		
	0	preview_off_after strobe	0b	R/W	Select the switch off mode after strobe pulse 0=normal preview/strobe mode, 1=switch off preview after strobe duration has expired To reinitiate the torch mode the preview_ctrl has to be set off and on again		
	2:1	preview_ctrl	00b	R/W	Preview is triggered by 00b = off 01b = software trigger (setting this bit automatically triggers preview) 10b = GPIO2 active high 11b = GPIO2 active low		

Datasheet, Confidential

۸ddr	. 10h	Curr3 co	ntrol1						
Addr: 12h		This register select the modes of the current sinks3033 current.							
Bit	Bit Bit Name Default Access Description								
3	txmask_on	0b	R/W	Enables the txmask operation 0b = disabled 1b = During Strobe current is reduced to Preview levels if GPIO1 =1					
4	curr3x_ext_ovtemp	06	R/W	Selects overtemperature switch off of flash LED 0b = normal operation of CURR3x 1b = if the voltage on GPIO2 drops below 1.25V, CURR3x is switched from strobe to preview current levels (can be used to monitor the temperature of the flash led)					
5	curr3x_strobe_high	0b	R/W	Doubles curr3x current during strobe 0b = normal operation of CURR3x (0153 mA) 1b = Doubles current during strobe (0300mA)					
6	txmask_invert	0b	R/W	Inverts the GPIO1 input for txmask function 0b = GPIO1 not inverted 1b = GPIO1 inverted					

Addr: 11h		Curr3 str	obe contr	ol
		This regis	ter select t	the modes of the current sinks3033 current.
Bit	Bit Name	Default	Access	Description
1:0	strobe_ctrl	00b	R/W	Strobe is triggered by 00b = off 01b = software trigger (setting this bit automatically triggers strobe 10b = GPI active high 11b = GPI active low
3:2	strobe_mode	00b	R/W	Selects strobe mode 00b = Mode 1 (Tstrobe=Ts; strobe trigger signal >= 10µs) 01b = Mode 2 (Tstrobe=max Ts) 10b = Mode 3 (Tstrobe = strobe signal) 11b = not used
7:4	strobe_timing	0000Ь	R/W	Selects strobe time (Ts) 0000b = 100 msec 0001b = 200 msec 0010b = 300 msec 0011b = 400 msec 0100b = 500 msec 0101b = 600 msec 0110b = 700 msec 0111b = 800 msec 1000b = 900 msec 1001b = 1000 msec 1010b = 1100 msec 1011b = 1200 msec 1101b = 1300 msec 1101b = 1400 msec 1110b = 1500 msec 1111b = 1600 msec

Addr	Addr: 0Eh		Curr3x strobe						
Addr: UEN		This regis ⁻	This register select the strobe current of the current sinks3033						
Bit Bit Name		Default	Access	Description					
7:0	curr3x_strobe	00	R/W	Selects strobe current (curr3x_strobe_high can double the current setting) 00h = 0 mA 01h = 0.6mA (1.25mA if curr3x_strobe_high = 1) F0h = 150mA (300mA if curr3x_strobe_high = 1) FFh = 153mA					

Note: Do not exceed 300mA for curr3x_strobe.

Addr: 0Fh		Curr3x preview							
Addr	. UFN	This register select the preview current of the current sinks3033							
Bit	Bit Name	Default	Access	Description					
7:0	curr3x_preview	00		Selects peview current 00h = 0 mA 01h = 0.6mA FFh = 153mA					

Addr: 10h		Curr3x ot	her		
		This regis	the current of the current sinks3033		
Bit	Bit Bit Name Default Access Description				
7:0	curr3x_other	00	R/W	Selects curr3x current, if curr30, curr31, curr32 or curr33 are not used for strobe/preview (CurX_mode=11b) 00h = 0 mA 01h = 0.6mA FFh = 153mA	

۸ ما ما بر	026	curr3 control						
Addr: 03h		This register select the mode of the current sinks30 - 33						
Bit	Bit Name	Default Access		Description				
				Select the mode of the current sink curr30				
				00b = off				
1:0	curr30_mode	0	R/W	01b = strobe/preview				
				10b = curr3x_other PWM controlled				
				11b = curr3x_other; do not use softdim_pattern=1				
				Select the mode of the current sink curr31				
				00b = off				
3:2	curr31_mode	0	R/W	01b = strobe/preview				
				10b = curr3x_other PWM controlled				
		Ť		11b = curr3x_other; do not use softdim_pattern=1				
				Select the mode of the current sink curr32				
				00b = off				
5:4	curr32_mode	0	R/W	01b = strobe/preview				
				10b = curr3x_other PWM controlled				
				11b = curr3x_other; do not use softdim_pattern=1				
				Select the mode of the current sink curr33				
				00b = off				
7:6	curr33_mode	0	R/W	01b = strobe/preview				
				10b = curr3x_other PWM controlled				
				11b = curr3x_other; do not use softdim_pattern=1				

Addr	106	Pattern cont	rol					
Addr	1011	This register controls the LED pattern						
Bit Bit Name		Default	Access	Description				
0	pattern_color	0	R/W	Defines the pattern type for the RGBx current sinks 0b = single 32 bit pattern (also set rgbx_mode = 11) 1b = RGB pattern with each 10 bits (set all rgbx_mode = 11)				
2:1	pattern_delay	0	R/W	Delay between pattern 00b = 0 sec 01b = 1 sec 10b = 2 sec 11b = 3 sec				
3	softdim_pattern	Ob	R/W	Enable the 'soft' dimming feature for the pattern generator 0 = Pattern generator directly control current sources 1 = 'Soft Dimming' is performed – see section 'Soft Dimming for pattern'				
4	curr30_pattern	0b	R/W	Additional CURR33 LED pattern control bit 0b = CURR30 controlled according curr30_mode register 1b = CURR30 controlled by LED pattern generator				
5	curr31_pattern	0b	R/W	Additional CURR33 LED pattern control bit 0b = CURR31 controlled according curr31_mode register 1b = CURR31 controlled by LED pattern generator				
6	curr32_pattern	0b	R/W	Additional CURR33 LED pattern control bit 0b = CURR32 controlled according curr32_mode register 1b = CURR32 controlled by LED pattern generator				
7	curr33_pattern	Ob	R/W	Additional CURR33 LED pattern control bit 0b = CURR33 controlled according curr33_mode register 1b = CURR33 controlled by LED pattern generator				

7.4.3 RGB Current Sinks RGB1, RGB2, RGB3 (VANA2,cpext)

The RGB1,RGB2, RGB3 are pins with different functionality. These pins can act as current sinks or as external chargepump. In addition RGB3 can be programmed as Analog LDO supplied by VBAT3

an be pr

Figure 19 - RGB pin functionality

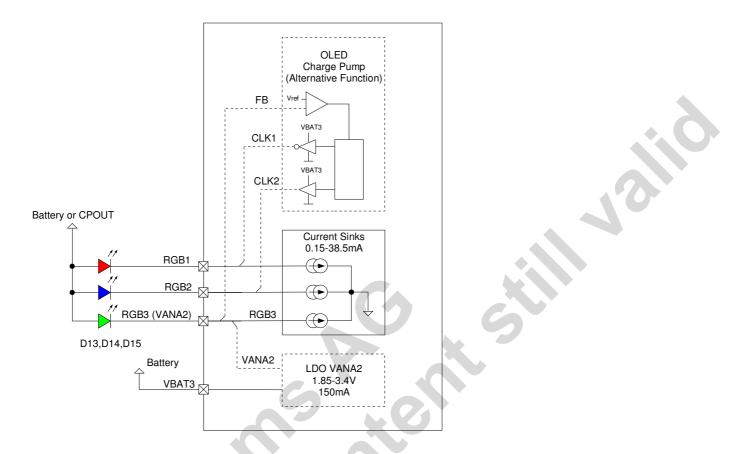


Table 14 - RGB pins Function Overview

	Bit settings					Function / I	Name	
rgb1_ mode	rgb2_ mode	rgb3_ mode	cp_ext _on	ldo_an a2_on	RGB1	RGB2	RGB3	Function
00b	00b	00b	0b	0b	open	open	open	all functions off
01b	01b	01b	0b	0b	RGB1	RGB2	RGB3	Normal current sink operation
10b	10b	10b	0b	0b	RGB1	RGB2	RGB3	PWM current sink operation
xxb	xxb	xxb	1b	xb	CP_CLK1	CP_CLK2	CP_FB	External chargepump operation
xxb	xxb	xxb	0b	1b	open or RGB1	open or RGB2	LDO_ANA2	current sink operation on RGB1 and RGB2, LDO_ANA2 on RGB3 pin

These low voltage current sinks have a resolution of 8 bits. They can be controlled individually by the LED pattern generator (on/off).

External PWM control of these current sinks is also possible and can be enabled by software (Input pin GPIO0). If the current sink RGB3 (VANA2) is not used, its alternative function is Ido VANA2.

Symbol	Parameter	Min	Тур	Мах	Unit	Note
I _{BIT7}	Current sink if Bit7 = 1		19.2		mA	For V(CURRx) > 0.2V

Symbol	Parameter	Min	Тур	Max	Unit	Note
I _{BIT6}	Current sink if Bit6 = 1		9.6			
I _{BIT5}	Current sink if Bit5 = 1		4.8			
I _{BIT4}	Current sink if Bit4 = 1		2.4			
I _{BIT3}	Current sink if Bit3 = 1		1.2			
I _{BIT2}	Current sink if Bit2 = 1		0.6			
I _{BIT1}	Current sink if Bit1 = 1		0.3			
I _{BIT0}	Current sink if Bit0 = 1		0.15			
Δm	matching Accuracy	-8		+8	%	RGB1,2,3; full scale
Δ	absolute Accuracy	-15		+15	%	V(RGBx) < VBAT-1.0V
RGB1 – RGB3	Voltage compliance	0.2		V(CP OUT)	V	

5

7.4.3.1 RGB Current Sinks Registers

Addr	- 02h	curr rgb control						
		This register s	select the mo	de of the current sinks RGB1, RGB2, RGB3				
Bit	Bit Name	Default	Access	Description				
1:0	rgb1_mode	0	R/W	Select the mode of the current sink RGB1 00b = off 01b = on 10b = PWM controlled 11b = LED pattern controlled				
3:2	rgb2_mode	0	R/W	Select the mode of the current sink RGB2 00b = off 01b = on 10b = PWM controlled 11b = LED pattern controlled				
5:4	rgb3_mode	0	R/W	Select the mode of the current sink RGB3 00b = off 01b = on 10b = PWM controlled 11b = LED pattern controlled				

Addr: 0Bh		Rgb1 current					
Auur.		This register controls the RGB current sink current.					
Bit Bit Name		Default	Access	Description			
	C.			Defines current into Current sink RGB1 00h = 0 mA			
7:0	rgb1_current	0	R/W	01h = 0.15 mA			
				FFh = 38.25 mA			

Addr: 0Ch		Rgb2 current						
		This register controls the RGB current sink current.						
Bit	Bit Name	Bit Name Default Access Description						
7:0	rgb2_current	0	R/W	Defines current into Current sink RGB2 00h = 0 mA 01h = 0.15 mA FFh = 38.25 mA				

Addr: UDh		Rgb3 current						
		This register of						
Bit	Bit Name	Default	Access	Description				
7:0	rgb3_current	0	R/W	Defines current into Current sink RGB3 00h = 0 mA 01h = 0.15 mA FFh = 38.25 mA	20			

7.4.4 General Purpose Current Sinks CURR41, CURR42, CURR43

The current sinks CURR42 and CURR43 are only available in the device version AS3688B. In the AS3688B version , the dcdc step up converter is not available.

The general purpose current sink can only be used if the DCDC step up converter is not required. The current sink on the pin DCDC_FB can even be used together with the dcdc converter in current feedback mode without overvoltage protection. These low voltage current sinks have a resolution of 8 bits and can sink up to 40mA.

Symbol	Parameter	Min	Тур	Max	Unit	Note
I _{BIT7}	Current sink if Bit7 = 1		19.2			
I _{BIT6}	Current sink if Bit6 = 1		9.6			
I _{BIT5}	Current sink if Bit5 = 1		4.8			
I _{BIT4}	Current sink if Bit4 = 1	C	2.4		mA	For V(CURRx) > 0.2V
I _{BIT3}	Current sink if Bit3 = 1		1.2			
I _{BIT2}	Current sink if Bit2 = 1		0.6			
I _{BIT1}	Current sink if Bit1 = 1		0.3			
I _{BIT0}	Current sink if Bit0 = 1		0.15			
Δm	matching Accuracy	-8		+8	%	CURR41,42,43; full scale
Δ	absolute Accuracy	-15		+15	%	V(CURR4x) < VBAT-1.0V
Curr41,42 ,43	Voltage compliance	0.2		VBAT	V	

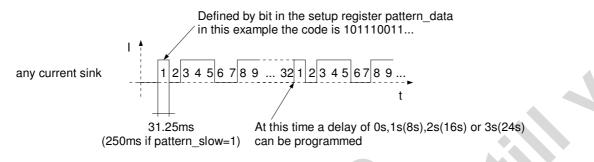
7.4.4.1 General Purpose Current Sinks CURR41, CURR42, CURR43 Registers

Addr: 04h		curr4 control					
		This register selects the mode of the current sinks CURR41, CURR42, CURR					
Bit	Bit Name	Default	Access	Description			
				Select the mode of the current sink CURR41			
				00b = off			
1:0	curr41_mode	0	R/W	01b = on			
				10b = PWM controlled			
				11b = LED pattern controlled			
				Select the mode of the current sink CURR42			
				00b = off			
3:2	curr42 mode	0	R/W	01b = on			
				10b = PWM controlled			
				11b = LED pattern controlled			
				Select the mode of the current sink CURR43			
				00b = off			
5:4	curr43_mode	0	R/W	01b = on			
				10b = PWM controlled			
				11b = LED pattern controlled			

Addr	12h	Curr41 current					
Auur	. 1311	This register of	urr41 current sink current.				
Bit Bit Name Default Access Description				Description			
7:0	curr41_current	0		Defines current into Current sink CURR41 00h = 0 mA 01h = 0.15 mA FFh = 38.25 mA			

Addr: 14h		Curr42 current					
		This register of	ontrols the c	curr42 current sink current.			
Bit Bit Name		Default	Access	Description			
7:0	curr42_current	0	R/W	Defines current into Current sink CURR42 00h = 0 mA 01h = 0.15 mA FFh = 38.25 mA			

Addr	154	Curr43 current				
Addr	nci :	This register controls the curr43 current sink current.				
Bit Bit Name		Default	Access	Description		
7:0	curr43_current	0	R/W	Defines current into Current sink CURR43 00h = 0 mA 01h = 0.15 mA FFh = 38.25 mA		


7.4.5 LED Pattern Generator

The LED pattern generator is capable of producing a pattern with 32 bits length and 1 second duration (31.25ms for each bit). The pattern itself can be started every second, every 2nd, 3rd or 4th second.

With this pattern all current sinks can be controlled. The pattern itself switches the configured current sources between 0 and their programmed current.

If everything else is switched off, the current consumption in this mode is IBAT. (excluding current through switched on current source) and the charge pump, if required. The charge pump can be automatically switched on/off depending on the pattern (see register cp_auto_on in the charge pump section) to reduce the overall current consumption.

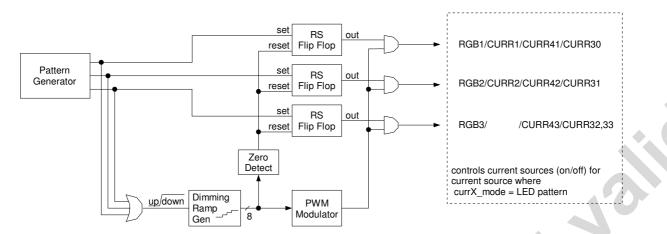
To select the different current sinks to be controlled by the LED pattern generator, see the 'xxxx'_mode registers (where 'xxxx' stands for the to be controlled current sink, e.g. curr1_mode for CURR1 current sink). See also the descirption of the different current sinks.

To allow the generator of a color patterns set the bit pattern_color to '1'. Then the pattern can be connected e.g. to RGB1/RGB2/RGB3 as follows:

Figure 21 - LED Pattern Generator AS3688 for pattern_color = 1

Defined by bit in the setup register pattern_data in this example the code is 111110001011111000110111...

		1 * *		
RGB1/CURF	1/CURR41/CURR30	147	28 1 4 7	
RGB2/CURF	2/CURR42/CURR31	2 5 8	29 2 5 8	
RGB3/	/CURR43/CURR32,33	369	30 3 6 9	
			t	
		++		
	(800)	100ms ms if pattern_slow=1)	At this time a delay of 0s,1s(8s),2s(16s) or can be programmed	⁻ 3s(24s)


Only those current sinks will be controlled, where the 'xxxx'_mode register is configured for LED pattern.

If the register bit pattern_slow is set, all pattern times are increased by a factor of eigth. (bit duration: 250ms if pattern_color=0 / 800ms if pattern_color=1, delays between pattern up to 24s).

7.4.5.1 Soft Dimming for Pattern

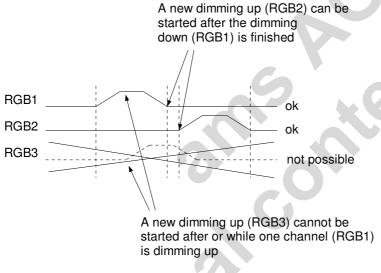
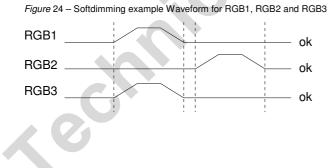

The internal pattern generator can be combined with the internal pwm dimming modulator to obtain as shown in the following figure:

Figure 22 – Softdimming Architecture for the AS3688 (softdim_pattern=1 and pattern_color = 1)



With the AS3688 smooth fade-in and fade-out effects can be automatically generated. As there is only one dimming ramp generator and one pwm modulator following constraints have to be considered when setting up the pattern (applies only if pattern_color=1):

Figure 23 – Softdimming example Waveform for RGB1, RGB2 and RGB3

However using the identical dimming waveform for two channels is possible as shown in the following figure:

7.4.5.2 LED Pattern Registers

Addu	: 19h,1Ah,1Bh,1Ch	Pattern data0, Pattern data1, Pattern data2, Pattern data3						
Addr	: 190,1A0,1B0,1C0	This registers contains the pattern data for the RGB current sinks.						
Bit	Bit Name	Default	Access	Description				
7:0	pattern_data0[7:0] ¹	0	R/W	Pattern data0; if this register is changed and patern_color=1 no current source must have currX_mode = 'LED pattern controlled' (11)				
7:0	pattern_data1[15:8] ¹	0	R/W	Pattern data1; if this register is changed and patern_color=1 no current source must have currX_mode = 'LED pattern controlled' (11)				
7:0	pattern_data2[23:16] ¹	0	R/W	Pattern data2; if this register is changed and patern_color=1 no current source must have currX_mode = 'LED pattern controlled' (11)				
7:0	pattern_data3[31:24] ¹	0	R/W	Pattern data3; if this register is changed and patern_color=1 no current source must have currX_mode = 'LED pattern controlled' (11)				

Note:

1. Update any of the pattern register only if none of the current sources is connected to the pattern generator ('xxxx'_mode must not be 11b). The pattern generator is automatically started at the same time when any of the current sources is connected to the pattern generator

٨ ما ما ير	106	Pattern control						
Addr: 18h		This register	controls the L	ED pattern				
Bit Bit Name		Default Access		Description				
0 pattern_color 0 R/W 2:1 pattern_delay 0 R/W		0	R/W	Defines the pattern type for the current sinks 0b = single 32 bit pattern (also set currX_mode = 'LED pattern controlled (11)) 1b = RGB pattern with each 10 bits (also set currX_mode = 'LED pattern controlled (11))				
		R/W	Delay between pattern 00b = 0 sec 01b = 1 sec (8 sec if pattern_slow=1) 10b = 2 sec (16 sec if pattern_slow=1) 11b = 3 sec (24 sec if pattern_slow=1)					
3	softdim_pattern	tdim_pattern 0b	R/W	 Enable the 'soft' dimming feature for the pattern generator 0 = Pattern generator directly control current sources 1 = 'Soft Dimming' is performed – see section 'Soft Dimm for pattern'; do not use for CURR1 or CURR2; do not set CURR3x_mode to 'other' if softdim_pattern=1 				
4	curr30_pattern	Ob	R/W	Additional CURR33 LED pattern control bit 0b = CURR30 controlled according curr30_mode register 1b = CURR30 controlled by LED pattern generator				
5	curr31_pattern	0b	R/W	Additional CURR33 LED pattern control bit 0b = CURR31 controlled according curr31_mode register 1b = CURR31 controlled by LED pattern generator				
6	curr32_pattern	0b	R/W	Additional CURR33 LED pattern control bit 0b = CURR32 controlled according curr32_mode register 1b = CURR32 controlled by LED pattern generator				
7	curr33_pattern	0b	R/W	Additional CURR33 LED pattern control bit 0b = CURR33 controlled according curr33_mode register 1b = CURR33 controlled by LED pattern generator				

Addr	: 2Ch	gpio_current				
Bit	Bit Name	Default Access Description				
6	pattern_slow	0	R/W	Pattern timing control 0b = normal mode 1b = slow mode (all pattern times are increased by a factor of eight)		

7.4.6 Overtemp comparator

If the LED temperature for CURR3x flash led is monitored with an external temperature sensor, the current sink CURR3x can be automatically switched from strobe to preview current levels, if the external temperature sensor's voltage drops below V_{OVtemp}. to avoid overheating of the flash LED.

The overtemperature comparator is multiplexed to GPIO2 and is switched on automatically, if Bit curr3x_ext_ovtemp is set.

Table 15 – Overtemp comparator Characteristics

Symbol	Parameter	Min	Тур	Мах	Unit	Note
V _{OVtemp}	Comparator switch level	1.22	1.25	1.28	V	

7.4.6.1 Overtemp comparator Registers

۸ d d	: 12h	Curr3 control1						
Aaar	: 12n	This regis	ter select	the modes of the current sinks3033 current.				
Bit	Bit Name	Default	Access	Description				
0	preview_off_after strobe	0b	R/W	Select the switch off mode after strobe pulse 0=normal preview/strobe mode, 1=switch off preview after strobe duration has expired				
2:1	preview_ctrl	00b	R/W	Preview is triggered by 00b = off 01b = software trigger 10b = GPIO active high 11b = GPIO active low				
3	0	0b	R/W	reserved				
4	curr3x_ext_ovtemp	0b	R/W	Selects overtemperature switch off of flash LED 0b = normal operation of CURR3x 1b = if the voltage on GPIO drops below 1.25V (above 1.25V if ext_ov_temp_inv=1), CURR3x is switched from strobe to preview current levels (can be used to monitor the temperature of the flash led or as general input to reduce the current through the flash LED e.g. to temporarily reduce the current from the battery)				
5	curr3x_strobe_high	0b	R/W	Doubles curr3x current during strobe 0b = normal operation of CURR3x (0160 mA) 1b = Doubles current during strobe (0320mA)				
6	Ō	0b	R/W	reserved				
7	curr33_pattern	0b	R/W	Additional CURR33 control bit 0b = CURR33 controlled according curr33_mode register 1b = CURR33 controlled by LED pattern generator				

Addr: 2Bh		Curr low voltage status2				
		This register controls the curr42 current sink current.				
Bit	Bit Name	Default Access Description				
5	ovtemp_ext	NA	R	Overtemp comparator status bit 0b = no overtemperature, GPIO2>1.25V 1b = overtemperature, GPIO2<1.25V		

Addr	: 2Ch	gpio current		
Bit	Bit Name	Default	Access	Description
0	ext_ov_temp_inv	0	R/W	Polarity of external overtemp comparator 0b = active high (Overtemperature when Vgpio>1.25V) 1b = active low (Overtemperature when Vgpio< 1.25V)

7.4.7 External chargepump

This external charge pump uses external schottky diodes and capacitors to generate low current outputs in the range of -15V to +15V. The device delivers a square wave signals and an inverted square wave signals at 250kHz or 500kHz with full Battery voltage swing. Depending on the external configuration the battery voltage is multiplied and / or inverted. A feedback loop with a dedicated regulation pin controls the output voltage by modulating the duty circle.

E.g.: There are 3 Schottky Diodes, 2 Resistors and 3 Capacitors externally required for -6V output voltage. For the Schottky Diodes the BAS40 (2 diodes in a SOT666 package) is recommended.

Symbol	Parameter	Min	Тур	Max	Unit	Note
Vfb ₀₀	Negative output mode feedback voltage		0	20	mV	Regulated, with internal current source
I _{fb}	Feedback current	9.7	10	10.3	μA	Current sourced at feedback pin for negative mode
Vfb ₀₁	/fb ₀₁ Positive output mode feedback voltage		1.25	1.28	V	Regulated, with two external resistors
Vout ₀₀	00 Output Voltage mode 00b		-6		V	with external 600k resistor
Vout ₀₁	Output Voltage mode 01b		15		V	with external 125k Ω resistor and 1.375 M Ω
n	Efficiency			85	%	Battery Voltage 3.5V
η	Encicity	70			70	Battery Voltage 4.2V
lout	Output Current	10			mA	@ -6V
lout	lout Output Current				mA	@ +15V

Table 16 – External Charge Pump Characteristics

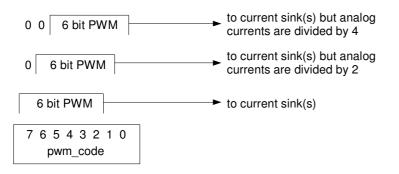
100

7.4.7.1 External chargepump Registers

		Reg. Control			
Addr		This register enables/disables the LDOs, Charge Pumps, Charge Pump LEDs, current sinks, the Step Up DC/DC Converter.			
Bit	Bit Name	Default	Access	Description	
4	cp_ext_on	0	R/W	Enable the external chargepump 0b = Disable the external chargepump. 1b = Enable the external chargepump	

Addr	106	Ext. chargep	ump mode	
		This register :	odes of the external chargepump	
Bit	Bit Name	Default	Access	Description
1:0	cp_ext_mode	0	R/W	Selects the mode of the Ext. charge pump 00b = regulate to negative voltage (e.g.: -6V) 01b = regulate to positive voltage (e.g.:+15V) 10b = unregulated (free running) 11b = reserved Select the mode of the current sink CURR41
3:2	cp_ext_clk<1:0>	0	R/W	Selects the switching frequency 00b = 250kHz 01b = 500kHz 10b = 1MHz 11b = NA
4	cp_ext_lowcurr	0	R/W	Driving capability of ext. charge pump 0b = normal current = lout 1b = reduced current = lout / 4 Output noise and ripple will be reduced

7.4.8 PWM Generator

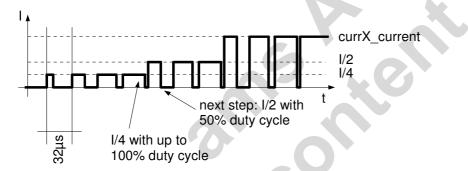

The PWM generator can be used for any current sink (CURR1, CURR2, CURR3x, CURR4x, RGB)... It can be programmed to use the pin GPIO0 (pwm_mode=0) or an internal PWM generator (pwm_mode=1). The setting applies for all current sinks, which are controlled by the pwm generator (e.g. CURR1 is pwm controlled if curr1_mode = 10, RGB1 is pwm controlled if rgb1_mode = 10). The pwm modulated signal (internal / external) can switch on/off the current sinks and therefore depending on its duty cycle change the brightness of an attached LED.

7.4.8.1 Internal PWM Generator

The internal PWM generator uses the 2MHz internal clock as input frequency and its dimming range is 6 bits digital $(2MHz / 2^{6} = 31.3kHz \text{ pwm frequency})$ and 2 bits analog. Depending on the actual code in the register 'pwm_code' the following algorithm is used:

- If pwm_code bit 7 = 1 Then the upper 6 bits (Bits 7:2) of pwm_code are used for the 6 bits PWM generation, which controls the selected currents sinks directly
- If pwm_code bit 7 =0 and bit 6 = 1 Then bits 6:1 of pwm_code are used for the 6 bits PWM generation. This signal controls the selected current sinks, but the analog current of these sinks is divided by 2
- If pwm_code bit 7 and bit 6 = 0
 Then bits 5:0 of pwm_code are used for the 6 bits PWM generation. This signal controls the selected current sinks, but the analog current of these sinks is divided by 4

Figure 25 – PWM Control



Automatic Up/Down Dimming

If the register pwm_dim_mode is set to 01 (up dimming) or 10 (down dimming) the value within the register pwm_code is increased (up dimming) or decreased (down dimming) every time and amount (either 1/4th or 1/8th) defined by the register pwm_dim_speed. The maximum value of 255 (completely on) and the minimum value of 0 (off) is never exceeded. It is used to smoothly and automatically dim the brightness of the LEDs connceted to any of the current sinks. The PWM code is readable all the time (Also during up and down dimming)

The waveform for up dimming looks as follows (cycles omitted for simplicity):

Figure 26 – PWM Dimming Waveform for up dimming (pwm_dim_mode = 01); currX_mode = PWM controlled (not all steps shown)

The internal pwm modulator circuit controls the current sinks as shown in the following figure:

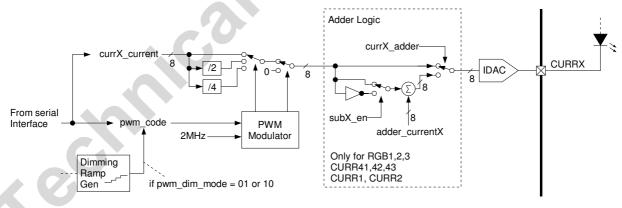


Figure 27 – PWM Control Circuit (currX_mode = 10b (PWM controlled)); X = any current sink

The adder logic (available for RGB1, RGB2, RGB3, CURR41, CURR42, CURR43, CURR1 and CURR2) is intended to allow dimming not only from 0% to 100% (or 100% to 0%) of currX_current, but also e.g. from 10% to 110% (or 110% to 10%) of currX_current. That means for up dimming the starting current is defined by 0 + currX_adder and the end current is defined by currX_current + currX_adder.

An overflow of the internal bus (8 Bits wide to the IDAC) has to be avoided by the register settings (currX_current + currX_adder must not exceed 255).

If the register subX_en is set, the result from the pwm_modulator is inverted logically. That means for up dimming the starting current is defined by currX_adder - 1 and the end current is defined by currX_adder - currX_current - 1. An overflow of the internal bus (8 Bits wide to the IDAC) has to be avoided by the register settings (currX_adder - currX_current - 1 must not be below zero).

Its purpose is to dim one channel e.g. CURR41 from e.g. 110% to 10% of curr41_current and at the same time dim another channel e.g. CURR42 from 20% to 120% of curr42_current.

Note:

- 1. The adder logic operates independent of the currX_mode setting, but its main purpose is to work together with the pwm modulator (improved up/down dimming)
- 2. If the adder logic is not used anymore, set the bit currX_adder to 0. (Setting adder_currentX to 0 is not sufficient)

	Decrease by ste	-		Decrease by 1/8th every step		Seconds	Seconds	Seconds
Step	%Dimming	PWM	%Dimming	PWM	50msec/ Step	25msec/ Step	5msec/ Step	2,5msec/ Step
1	100,0	255	100,0	255	0,00s	0,00s	0,000s	0,000s
2	75,3	192	87,8	224	0,05s	0,03s	0,005s	0,003s
3	56,5	144	76,9	196	0,10s	0,05s	0,010s	0,005s
4	42,4	108	67,5	172	0,15s	0,08s	0,015s	0,008s
5	31,8	81	59,2	151	0,20s	0,10s	0,020s	0,010s
6	23,9	61	52,2	133	0,25s	0,13s	0,025s	0,013s
7	18,0	46	45,9	117	0,30s	0,15s	0,030s	0,015s
8	13,7	35	40,4	103	0,35s	0,18s	0,035s	0,018s
9	10,6	27	35,7	91	0,40s	0,20s	0,040s	0,020s
10	8,2	21	31,4	80	0,45s	0,23s	0,045s	0,023s
11	6,3	16	27,5	70	0,50s	0,25s	0,050s	0,025s
12	4,7	12	24,3	62	0,55s	0,28s	0,055s	0,028s
13	3,5	9	21,6	55	0,60s	0,30s	0,060s	0,030s
14	2,7	7	19,2	49	0,65s	0,33s	0,065s	0,033s
15	2,4	6	16,9	43	0,70s	0,35s	0,070s	0,035s
16	2,0	5	14,9	38	0,75s	0,38s	0,075s	0,038s
17	1,6	4	13,3	34	0,80s	0,40s	0,080s	0,040s
18	1,2	3	11,8	30	0,85s	0,43s	0,085s	0,043s
19	0,8	2	10,6	27	0,90s	0,45s	0,090s	0,045s
20	0,4	1	9,4	24	0,95s	0,48s	0,095s	0,048s
21	0,0	0	8,2	21	1,00s	0,50s	0,100s	0,050s
22			7,5	19	1,05s	0,53s	0,105s	0,053s
23			6,7	17	1,10s	0,55s	0,110s	0,055s
24		, i	5,9	15	1,15s	0,58s	0,115s	0,058s
25		~	5,5	14	1,20s	0,60s	0,120s	0,060s
26			5,1	13	1,25s	0,63s	0,125s	0,063s
27			4,7	12	1,30s	0,65s	0,130s	0,065s
28			4,3	11	1,35s	0,68s	0,135s	0,068s
29			3,9	10	1,40s	0,70s	0,140s	0,070s
30			3,5	9	1,45s	0,73s	0,145s	0,073s
31			3,1	8	1,50s	0,75s	0,150s	0,075s
32			2,7	7	1,55s	0,78s	0,155s	0,078s
33			2,4	6	1,60s	0,80s	0,160s	0,080s
34			2,0	5	1,65s	0,83s	0,165s	0,083s
35			1,6	4	1,70s	0,85s	0,170s	0,085s

Figure 28 – PWM Table

	Decrease by 1/4th every step		Decrease by 1/8th every step		Seconds	Seconds	Seconds	Seconds
Step	%Dimming	PWM	%Dimming PWM 5		50msec/ Step	25msec/ Step	5msec/ Step	2,5msec/ Step
36			1,2	1,2 3		0,88s	0,175s	0,088s
37			0,8	2	1,80s	0,90s	0,180s	0,090s
38			0,4	0,4 1		0,93s	0,185s	0,093s
39			0,0 0		1,90s	0,95s	0,190s	0,095s

7.4.8.2 PWM Generator Registers

	: 16h	Pwm control This register of	controls PW					
Bit	Bit Name	Default	Access	Descriptio				
0	pwm_mode	1b	R/W	0b = Use ex (defin 1b = Use in	PWM source xternal PWN ed by pwm_ ternal PWM	/I from GPI _gpio2) I (default)	O0 or GPIC	02
2:1	pwm_dim_mode	00b	R/W	00b = no di used for pw 01b = logar Start 10b = logar Start curre unne 11b = NA	vm generato ithmic up dii value is act ithmic down value is act nt source af cessary quie	ual content r mming (coo ual pwm_c dimming (ual pwm_c iter dimmin escent curr	des are incl ode codes are o ode; switcl g is finished ent	decreased) h off the dimmed d to avoid
5:3	pwm_dim_speed	000b	R/W	000b = b 001b = b 010b = b 011b = b 100b = b 101b = b 110b = b	thing speec by 1/4 th ever by 1/8 th ever by 1/4 th ever by 1/4 th ever by 1/4 th ever by 1/4 th ever by 1/8 th ever by 1/4 th ever by 1/8 th ever	y 50 msec y 50 msec y 25 msec y 25 msec y 5 msec (i y 5 msec (i y 2.5 msec	(total dim ti (total dim ti (total dim ti (total dim tin total dim tin total dim tin total dim tin	me 1.9s) me 0.5s) me 0.95s) ne 100ms) ne 190ms) time 50ms)
6	pwm_gpio2	0b	R/W	Selects the 0b = Use G	PWM source PIO0 for ex PIO2 for ex	ce ternal pwm		

Addr	174	Pwm code		
Addr	: 17n	This register controls the P		Pwm code.
Bit	Bit Name	Default	Access	Description
7:0	pwm_code	00b	R/W	Selects the PWM code 00h = Always 0 FFh = Always 1

Addr	. 20h	Adder Curre	Adder Current 1					
Addr		This register o	rrent which can be added to CURR1, CURR41, RGB1					
Bit Bit Name Defaul		Default	Access	Description				
7:0	adder_current1	00b	R/W	Selects the added current value – do not exceed together with currX_current the internal 8 Bit range (see text) 00h = 0 (represents 0mA) FFh = 255 (represents 38.25mA)				

				 FFh = 255 (represents 38.25mA)
Addr:	216	Adder Curre	nt 2	
Addr	311	This register of	defines the cu	urrent which can be added to CURR2, CURR42, RGB2
Bit	Bit Name	Default	Access	Description
7:0	adder_current2	00b	R/W	Selects the added current value – do not exceed together with currX_current the internal 8 Bit range (see text) 00h = 0 (represents 0mA) FFh = 255 (represents 38.25mA)

Addu	- 20h	Adder Curre	nt 3	
Addr	520	This register defines the current which can be added to CURR43, RGB3		
Bit	Bit Name	Default	Access	Description
7:0	adder_current3	00b	R/W	Selects the added current value – do not exceed together with currX_current the internal 8 Bit range (see text) 00h = 0 (represents 0mA) FFh = 255 (represents 38.25mA)

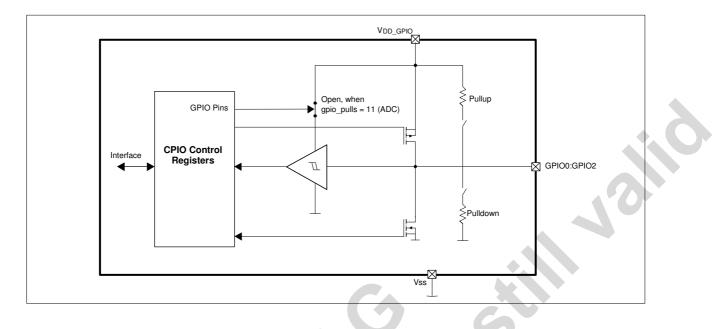
Addr:	226	Adder Enabl	e 1				
Addr	. 5511	Enables the adder circuit for the selected current sources					
Bit	Bit Name	Default	Access	Description			
0	rgb1_adder	0	R/W	Enables adder circuit for current source RGB1 0 = Normal Operation of the current source 1 = adder_current1 gets added to the current source current			
1	rgb2_adder	0	R/W	Enables adder circuit for current source RGB2 0 = Normal Operation of the current source 1 = adder_current2 gets added to the current source current			
2	rgb3_adder	0	R/W	Enables adder circuit for current source RGB3 0 = Normal Operation of the current source 1 = adder_current3 gets added to the current source current			
3	curr41_adder	0	R/W	Enables adder circuit for current source CURR41 0 = Normal Operation of the current source 1 = adder_current1 gets added to the current source current			
4	curr42_adder	0	R/W	Enables adder circuit for current source CURR42 0 = Normal Operation of the current source 1 = adder_current2 gets added to the current source current			
5	curr43_adder	0	R/W	Enables adder circuit for current source CURR43 0 = Normal Operation of the current source 1 = adder_current3 gets added to the current source current			

	Addr: 34h		Adder Enable	Adder Enable 2					
			Enables the a	dder circuit fo	r the selected current sources				
	Bit Bit Name		Default	Access	Description				
	0	curr1_adder	0	R/W	Enables adder circuit for current source CURR1 0 = Normal Operation of the current source 1 = adder_current1 gets added to the current source current				
	1	curr2_adder	0	R/W	Enables adder circuit for current source CURR2 0 = Normal Operation of the current source 1 = adder_current2 gets added to the current source current				

Addr: 35h		Subtract Enable Enable the inversion from the signal from the pwm generator				
0	sub_en1	0	R/W	Inverts the signal from the pwm generator 0 = Direct Operation (no inversion) 1 = The signal from the pwm generator for which the adder is enabled (curr1_adder = 1, curr41_adder = 1, rgb1_adder = 1) is inverted		
1	sub_en2	0	R/W	Inverts the signal from the pwm generator 0 = Direct Operation (no inversion) 1 = The signal from the pwm generator for which the adder is enabled (curr2_adder = 1, curr42_adder = 1, rgb2_adder = 1) is inverted		
2	sub_en3	0	R/W	Inverts the signal from the pwm generator 0 = Direct Operation (no inversion) 1 = The signal from the pwm generator for which the adder is enabled (curr42_adder = 1, rgb3_adder = 1) is inverted		

7.5 General Purpose Input / Outputs

GPIO0 :GPIO2, GPI are four highly-configurable general purpose input/output pins which can be used for the following functionality (each GPIO pin is independent from the other GPIO pins):


- Digital Schmitt-Trigger Input
- Digital Output with 4mA Driving Capability at 2.8V Supply (VDD_GPIO)
- Tristate Output
- Analog Input to the ADC (GPIO0, GPIO1, GPIO2, GPI)
- Strobe for Camera Flash Current Sink (GPI)
- Preview Current set input for Camera Flash Current Sink (GPIO2)
- PWM operation with all current sinks (GPIO0); number of current sources using this PWM input is fully configurable
- Flash led overtemperature protection (GPIO2)
- Default Mode for GPI is Input

Default Mode for GPIO0, GPIO1 and GPIO2 is Input (Pull-Down)

GPIO4 not applicable in the AS3688

GPIO Pin	Pin #	Configuration	Additional Function
GPIO0	TBD		ADC Input; PWM Input
GPIO1	TBD	 Digital Input, Totem-Pole Output (Push/Pull), Open Drain (PMOS or NMOS), High-Z, 	ADC Input; TXMask input
GPIO2	TBD		ADC Input; Preview Input for Photocamera Flash LED (CURR3x); PWM Input
GPI	TBD	Digital Input	ADC Input; Strobe Input for Photocamera Flash LED (CURR ₃ <i>x</i>)

Figure 29 - GPIO Pin Connections

7.5.1 GPIO Characteristics

Table 18 - GPIO DC Characteristics

Symbol	Parameter	Min	Max	Unit	Note
Rpull	Pull up/Pull down Resistance	30	75	kΩ	
Vgpio	Supply Voltage	1.5	3.3	V	
VIH	High Level Input Voltage	0.7·Vgpio		V	
VIL	Low Level Input Voltage		0.3∙ Vgpio	V	
VHYS	Hysteresis	0.1 · Vgpio		V	
ILEAK	Input Leakage Current	-5	5	μΑ	To Vgpio and VSS
VOH	High Level Output Voltage	0.8·Vgpio		V	at - lout
VOL	Low Level Output Voltage		0.2∙ Vgpio	V	at lout
		4		mA	Vgpio = 2.8V, gpiox_low_curr = 1 (page gpio0_low_curr)
	Driving Capability	16			Vgpio = 2.8V, gpiox_low_curr = 0
lout		1			Vgpio = 1.5V, gpiox_low_curr = 0 guaranteed by design.
C		4			Vgpio = 1.5V, gpiox_low_curr = 1 guaranteed by design.
CLOAD	Capacitive Load		50	pF	

Vgpio is used as the supply voltage for all GPIOs.

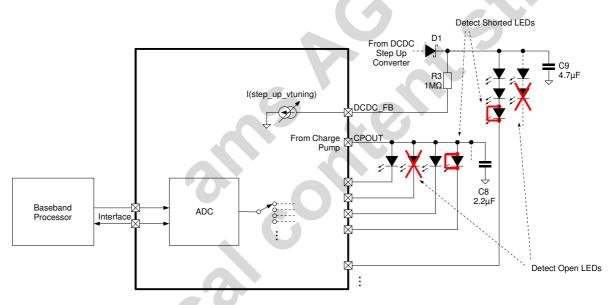
Ś

7.5.2 GPIO Registers

BitBit NameDefaultAccessDescription0gpio0_out0R/WWrites a logic signal to pin GPIO0; this is in any other bit setting e.g., gpio0_mode.1gpio1_out0R/WWrites a logic signal to pin GPIO1; this is in any other bit setting e.g., gpio1_mode.2gpio2_out0R/WWrites a logic signal to pin GPIO1; this is in any other bit setting e.g., gpio1_mode.2gpio2_out0R/WWrites a logic signal to pin GPIO2; this is in any other bit setting e.g., gpio2_mode.3gpi_en0R/WEnables the GPI input. Set to 1 if used for s 0 = input disabled 1 = input enabled; can be used for strobe4gpi_curr30_en0R/W0 = input disabled 1 = input enabled5gpi_curr31_en0R/W0 = input disabled 1 = input enabled6gpi_curr32_en0R/W0 = input disabled 1 = input disabled 1 = input enabled	Addr: 05h		GPIO Output				
0 gpio0_out 0 R/W Writes a logic signal to pin GPIO0; this is in any other bit setting e.g., gpio0_mode. 1 gpio1_out 0 R/W Writes a logic signal to pin GPIO1; this is in any other bit setting e.g., gpio1_mode. 2 gpio2_out 0 R/W Writes a logic signal to pin GPIO2; this is in any other bit setting e.g., gpio1_mode. 3 gpio2_out 0 R/W Writes a logic signal to pin GPIO2; this is in any other bit setting e.g., gpio2_mode. 3 gpi_en 0 R/W Enables the GPI input. Set to 1 if used for s 0 = input disabled 4 gpi_curr30_en 0 R/W Enables the CURR30 input. 5 gpi_curr31_en 0 R/W Enables the CURR31 input. 6 gpi_curr32_en 0 R/W Enables the CURR32 input. 6 gpi_curr32_en 0 R/W Enables the CURR32 input.			This register controls GPIO outputs.				
0 gpi00_0ut 0 H/W any other bit setting e.g., gpi00_mode. 1 gpi01_out 0 R/W Writes a logic signal to pin GPI01; this is in any other bit setting e.g., gpi01_mode. 2 gpi02_out 0 R/W Writes a logic signal to pin GPI02; this is in any other bit setting e.g., gpi02_mode. 3 gpi_en 0 R/W Enables the GPI input. Set to 1 if used for stope 4 gpi_curr30_en 0 R/W Enables the CURR30 input. 5 gpi_curr31_en 0 R/W 0 = input disabled 6 gpi_curr32_en 0 R/W Enables the CURR32 input. 6 gpi_curr32_en 0 R/W 0 = input disabled	Bit	Bit Name	Default	Access	Description		
1 gpio1_out 0 H/W any other bit setting e.g., gpio1_mode. 2 gpio2_out 0 R/W Writes a logic signal to pin GPIO2; this is in any other bit setting e.g., gpio2_mode. 3 gpi_en 0 R/W Enables the GPI input. Set to 1 if used for stope 4 gpi_curr30_en 0 R/W 0 Enables the CURR30 input. 5 gpi_curr31_en 0 R/W 0 enput disabled 6 gpi_curr32_en 0 R/W 0 enput disabled 6 gpi_curr32_en 0 R/W 0 enput disabled	0	gpio0_out	0	R/W	Writes a logic signal to pin GPIO0; this is independent of any other bit setting e.g., gpio0_mode.		
2 gpi02_out 0 R/W any other bit setting e.g., gpi02_mode. 3 gpi_en 0 R/W Enables the GPI input. Set to 1 if used for strobe 4 gpi_curr30_en 0 R/W 0 = input disabled 4 gpi_curr30_en 0 R/W 0 = input disabled 5 gpi_curr31_en 0 R/W 0 = input disabled 6 gpi_curr32_en 0 R/W 0 = input disabled 1 input enabled 1 = input enabled 1 = input enabled	1	gpio1_out	0	R/W	Writes a logic signal to pin GPIO1; this is independent of any other bit setting e.g., gpio1_mode.		
3 gpi_en 0 R/W 0 = input disabled 4 gpi_curr30_en 0 R/W 0 = input disabled 5 gpi_curr31_en 0 R/W 0 = input disabled 6 gpi_curr32_en 0 R/W 0 = input disabled	2	gpio2_out	0	R/W	Writes a logic signal to pin GPIO2; this is independent of any other bit setting e.g., gpio2_mode.		
4 gpi_curr30_en 0 R/W 0 = input disabled 5 gpi_curr31_en 0 R/W 0 = input disabled 6 gpi_curr32_en 0 R/W 0 = input disabled 1 = input disabled 1 = input enabled	3	gpi_en	0	R/W	Enables the GPI input. Set to 1 if used for strobe trigger. 0 = input disabled 1 = input enabled; can be used for strobe trigger		
5 gpi_curr31_en 0 R/W 0 = input disabled 6 gpi_curr32_en 0 R/W 0 = input disabled 6 gpi_curr32_en 0 R/W 0 = input disabled	4	gpi_curr30_en	0	R/W	0 = input disabled		
6 gpi_curr32_en 0 R/W 0 = input disabled	5	gpi_curr31_en	0	R/W	0 = input disabled		
I = input enabled	6	gpi_curr32_en	0	R/W			
7 gpi_curr33_en 0 R/W Enables the CURR33 input. 1 = input disabled 1 = input enabled	7	gpi_curr33_en	0	R/W	0 = input disabled		

Addr	066	GPIO Signal					
Auur.		This register controls GPIO outputs.					
Bit	Bit Name	Default	Access	Description			
0	gpio0_in	N/A	R	Reads a logic signal from pin GPIO0; this is independent of any other setting e.g., bits gpio1_mode.			
1	gpio1_in	N/A	R	Reads a logic signal from pin GPIO1; this is independent of any other setting e.g., bits gpio1_mode.			
2	gpio2_in	N/A	R	Reads a logic signal from pin GPIO2; this is independent of any other setting e.g., bits gpio1_mode.			
3	gpi_in	N/A	R	Reads a logic signal from pin GPI; if gpi_en=1			
4	curr30_in	N/A	R	Reads a logic signal from pin CURR30; if gpi_curr30_en=1			
5	curr31_in	N/A	R	Reads a logic signal from pin CURR31; if gpi_curr31_en=1			
6	curr32_in	N/A	R	Reads a logic signal from pin CURR32; if gpi_curr32_en=1			
7	curr33_in	N/A	R	Reads a logic signal from pin CURR33; if gpi_curr33_en=1			

XC


Addr: 1Eh		GPIO01_control				
Auur.		This register controls GPIO0 and GPIO1 pin functions.				
Bit	Bit Name	Default	Access	Description		
1:0	gpio0_mode	00	R/W	Defines the direction for pin GPIO0. 00 = Input only or used for PWM 01 = Output (push and pull). 10 = Output (open drain, only push; only NMOS is active). 11= Output (open drain, only pull; only PMOS is active).		
3:2	gpio0_pulls	01	R/W	Adds the following pullup/pulldown to pin GPIO0; this is independent of setting of bits gpio0_mode. 00 = None 01 = Pulldown 10 = Pullup 11= ADC input (gpio0_mode = XX); recommended for analog signals.		
5:4	gpio1_mode	00	R/W	Defines the direction for pin GPIO1. 00 = Input only; can be used for TXMask 01 = Output (push and pull). 10 = Output (open drain, only push; only NMOS is active). 11= Output (open drain, only pull; only PMOS is active).		
7:6	gpio1_pulls	01	R/W	Adds the following pullup/pulldown to pin GPIO1; this is independent of setting of bits gpio1_mode. 00 = None 01 = Pulldown 10 = Pullup 11= ADC input (gpio1_mode = XX); recommended for analog signals.		

Addr: 1Fh		GPIO23 control				
		This register controls pins GPIO2 pin functions.				
Bit	Bit Name	Default	Access	Description.		
1:0	gpio2_mode	00	R/W	Defines the direction for pin GPIO2. 00 = Input only; can be used for PWM or preview mode 01 = Output (push and pull). 10 = Output (open drain, only push; only NMOS is active). 11= Output (open drain, only pull; only PMOS is active).		
3:2	gpio2_pulls	11	R/W	Adds the following pullup/pulldown to pin GPIO2; this is independent of setting of bits gpio2_mode. 00 = None 01 = Pulldown 10 = Pullup 11= ADC input (gpio2_mode = XX); recommended for analog signals.		
7:4				NĂ		

Addr: 20h		GPIO driving cap This register enables low current mode for GPIOs.				
0	gpio0_low_curr	0	R/W	Defines the driving capability of pin GPIO0. 0 = lout 1 = lout /4		
1	gpio1_low_curr	0	R/W	Defines the driving capability of pin GPIO1. 0 = lout 1 = lout /4		
2	gpio2_low_curr	0	R/W	Defines the driving capability of pin GPIO2. 0 = lout 1 = lout /4		
7:3				N/A		

7.6 LED Test

Figure 30 - LED Function Testing

The AS3688 supports the verification of the functionality of the connected LEDs (open and shorted LEDs can be detected). This feature is especially useful in production test to verify the correct assembly of the LEDs, all its connectors and cables. It can also be used in the field to verify if any of the LEDs is damaged. A damaged LED can then be disabled (to avoid unnecessary currents).

The current sources, charge pump, dcdc converter and the internal ADC are used to verify the forward voltage of the LEDs. If this forward voltage is within the specified limits of the LEDs, the external circuitry is assumed to operate.

7.6.1 Function Testing for single LEDs connected to the Charge Pump

For any current source connected to the charge pump (usually RGB{1,2,3}, CURR{30,31,32,33,41,42,43}) where only one LED is connected between the charge pump and the current sink (see Figure 1) use:

Step	Action	Example Code
1.	Switch on the charge pump and set it into manual 1:2 mode (to avoid automatic mode switching during measurements)	Reg 23h <- 14h (cp_mode = 1:2, manual) Reg 00h <- 04h (cp _on = 1)

Step	Action	Example Code
2.	Switch on the current sink for the LED to be tested	e.g. for register CURR31set to 9mA use Reg 10h <- 0Fh (curr3x_other = 9mA) Reg 03h <- 0ch (curr31_mode = curr3x_other)
3.	Measure with the ADC the voltage on CP_OUT	Reg 26h <- 95h (adc_select=CP_OUT,start ADC) Fetch the ADC result from Reg 27h and 28h
4.	Measure with the ADC the voltage on the switched on current sink	Reg 26h <- 8bh (adc_select=CURR31,start ADC) Fetch the ADC result from Reg 27h and 28h
5.	Switch off the current sink for the LED to be tested	Reg 03h <- 00h (curr31_mode = off)
6.	Compare the difference between the ADC measurements (which is the actual voltage across the tested LED) against the specification limits of the tested LED	Calculation performed in baseband uProcessor
7.	Do the same procedure for the next LED starting from point 2	Jump to 2. If not all the LEDs have been tested
8.	Switch off the charge pump set chargepump automatic mode	Reg 00h <- 00h (cp _on = 0) Reg 23h <- 00h

Table 19 – Function Testing for LEDs connected to the Charge Pump

Note: For CURR41,42,43 first set the charge pump into 1:1 mode and test if the LED is shorted. Then use the above described procedure.

7.6.2 Function Testing for LEDs connected to the Step Up DCDC Converter

For LEDs connected to the DCDC converter (usually current sinks CURR1and CURR2) use the following procedure:

Step	Action	Example Code
1.	Switch on the current sink for the LED string to be tested (CURR1 or CURR2)	e.g. Test LEDs on CURR1: Reg 01h <- 01h (curr1_mode=on) Reg 09h <- 3ch (curr1 = 9mA)
2.	Select the feedback path for the LED string to be tested (e.g. step_up_fb = 01 for LED string on CURR1)	Reg 21h <- 02h (feedback=curr1)
3.	Set the current for step_up_vtuning exactly above the maximum forward voltage of the tested LED string + 0.6V (for the current sink) + 0.25V; add 6% margin (accuracy of step_up_vtuning); this sets the maximum output voltage limit for the DCDC converter	e.g. 4 LEDs with UfMAX = $4.1V$ gives $17.25V +6\%$ = $18.29V$; if R3= $1M\Omega$ and R4 = open, then select step_up_vtuning = 18 (Reg 21h <- $92h$; results in 19.25V overvoltage protection voltage – see table in DCDC section)
4.	Set stepup_prot = 1	Reg 22h <- 04h
5.	Switch on the DCDC converter	Reg 00h <- 08h
6.	Wait 1ms (DCDC startup time)	
7.	Measure the voltage on DCDC_FB (ADC)	Reg 26h <- 96h (adc_select=DCDC_FB, start ADC; Fetch the ADC result from Reg 27h and 28h)
8.	If the voltage on DCDC_FB is above 1.0V, the tested LED string is broken – then skip the following steps	(Code >199h)
9.	Switch off the overvoltage protection (stepup_prot = 0)	Reg 22h <- 00h
10.	Reduce step_up_vtuning step by step until the measured voltage on DCDC_FB (ADC) is above 1.0V.	e.g.: Reg 21h <- 62h (step_up_vtuning=12): ADC result=1,602V
11.	Measure voltage on DCDC_FB	e.g. DCDC_FB=1.602V
12.	Switch off the DCDC converter	Reg 00h <- 00h

Table 20 – Function Testing for LEDs connected to the DCDC converter

Table 20 - Function Testing for LEDs connected to the DCDC converter

Step	Action	Example Code
13.	The voltage on the LED string can be calculated now as follows (R4 = open): VLEDSTRING = V(DCDC_FB) + I(step_up_vtuning) * R3 - 0.5V (current sinks feedback voltage: VFB2). V(DCDC_FB) = ADC Measurement from point 11 I(step_up_vtuing) = last setting used for point 10	e.g.: VLED = (1.602V + 12V - 0.5V) / 4 = 3.276V
	Compare the calculated value against the specification limits of the tested LEDs	

With the above described procedures electrically open and shorted LEDs can be automatically detected. To reduce the settling time of the DCDC converter to changes of step_up_vtuning, the external capacitors C10 and C11 can be changed to C10=150pF and C11=1.5nF.

7.7 Analog-To-Digital Converter

The AS3688 has a built-in 10-bit successive approximation analog-to-digital converter (ADC). It is internally supplied by V2_5, which is also the full-scale input range (0V defines the ADC zero-code). For input signal exceeding V2_5 (typ. 2.5V) a resistor divider with a gain of 0.4 (Ratioprescaler) is used to scale the input of the ADC converter. Consequently the resolution is:

Channels (Pins)	Input Range	Vlsb	Note
GPIO0, GPIO1, GPIO2, GPI, DCDC_FB	0V-2.5V	2.44mV	VLSB=2.5/1024
ADCTEMP_CODE	TBD	1 / ADCтс	junction temperature
RGB1,RGB2,RGB3, CURR{30, 31, 32, 33, 41, 42, 43} VBAT2, CP_OUT	0V-5.5V	6.1mV	VLSB=2.5/1024 * 1/0.4; internal resistor divider used
CURR1, CURR2	0V-1.0V	2.44mV	VLSB=2.5/1024

Table 21 – ADC Input Ranges, Compliances and Resolution

Symbol	Parameter	Min	Тур	Max	Unit	Note
	Resolution	10			Bit	
Vin	Input Voltage Range	VSS		Vsupply	V	Vsupply = V2_5
DNL	Differential Non-Linearity		± 0.25		LSB	
Inl	Integral Non-Linearity		± 0.5		LSB	
Vos	Input Offset Voltage		± 0.25		LSB	
Rin	Input Impedance	100			MΩ	
Cin	Input Capacitance			9	pF	
Vsupply (V2_5)	Power Supply Range		2.5		V	± 2%, internally trimmed used as reference for ADC converter
Idd	Power Supply Current		500		μΑ	During conversion only.
Idd	Power Down Current		100		nA	
TTOL	Temperature Sensor Accuracy		+/-5		°C	@ 25 °C
ADCTOFFSET	ADC temperature measurement offset value		375		Code	

Table 22 – ADC Parameters

Symbol	Parameter	Min	Тур	Мах	Unit	Note
ADCTC	Code temperature coefficient		1.2939		Code/°C	Temperature change per ADC LSB
Ratioprescaler	Ratio of Prescaler		0.4			For all low voltage current sinks, CP_OUT and VBAT2
VGPIOCURR	Voltage Compliance of current source for GPIO	0.0		1.35	V	Current Source for nin CDIO2
Igpiocurr	Current Accuracy for GPIO current source	-1.0µA	1-15µA	+1.0µA	V	Current Source for pin GPIO2
	Tra	nsient Pa	rameters	(2.5V, 25	°C)	
Тс	Conversion Time		27		μs	All signal are Internally
fc	Clock Frequency		1.0		MHz	generated and triggered by
ts	Settling Time of S&H		4		μs	start_conversion

The junction temperature (TJUNCTION) can be calculated with the following formula (ADCTEMP_CODE is the adc conversion result for channel 15 selected by register adc_select = 000100b):

TJUNCTION [°C] = ADCTOFFSET - ADCTC * ADCTEMP_CODE

7.7.1 ADC Registers

Addr: 26h		ADC_control				
laar	: 200	This register input source selection and initialization of ADC.				
Bit	Bit Name	Default Access		Description		
				Selects input source as ADC input.		
				000000 (00h) = GPIO0		
				000001 (01h) = GPIO1		
				000010 (02h) = GPIO2		
				000011 (03h) = GPI		
				000100 (04h) = reserved		
				000101 (05h) = RGB1		
				000110 (06h) = RGB2		
				000111 (07h) = RGB3		
				001000 (08h) = CURR1		
				001001 (09h) = CURR2		
				001010 (0Ah) = CURR30		
5:0	adc select ¹	0	R/W	001011 (0Bh) = CURR31		
0.0				001100 (0Ch) = CURR32		
				001101 (0Dh) = CURR33		
				001110 (0Eh) = CURR41		
				001111 (0Fh) = CURR42		
				010000 (10h) = CURR43		
				010001 (11h) = reserved		
				010010 (12h) = reserved		
				010011 (13h) = reserved		
				010100 (14h) = VBAT2		
				010101 (15h) = CP_OUT		
				010110 (16h) = DCDC_FB		
				010111 (17h) = ADCTEMP_CODE (junction temperature)		
				011xxx, 1xxxxx = reserved		
6				NA		
7	start conversion	N/A	W	Writing a 1 into this bit starts one ADC conversion cycle.		

1. See Table 'ADC Input Ranges, Compliances and Resolution' for ADC ranges and possible

Addr: 2Ch		GPIO current				
		controls the c	output curren	t of pin GPIO (e.g. for light sensor)		
Bit	Bit Name	Default	Access	Description		
3:1	gpio2_curr	000	R/W	000 off 001 2uA 010 4uA 111 14uA		

Addr: 27h		ADC_MSB R	esult	
		Together with	n Register 27	h, this register contains the results (MSB) of an ADC cycle.
Bit	Bit Name	Default	Access	Description
6:0	D9:D3	N/A	R	ADC results register.
7	result_not_ready	N/A	R	Indicates end of ADC conversion cycle. 0 = Result is ready. 1 = Conversion is running.

Addr: 28h		ADC_LSB R	esult			
		Together with Register 28h, this register contains the results (LSB) of an ADC cycle				
Bit	Bit Name	Default Access Description				
2:0	D2:D0	N/A	R	ADC result register.		
7:3				N/A		

Figure 31 – ADC Timing Diagrams (TBD: TODO: Increase Sample Time to 16us)

Serial Bus		
start_conve	version _	
1MHz Clock*		—
Sample Input*		
ADC_ON*		
result_not_ready**		
D9:0**	Old Data V Data Not Valid Data Ready	_
* Internal Signals ** Register Bits		

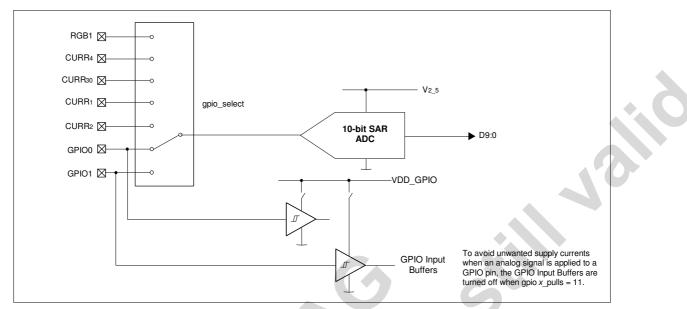


Figure 32 – ADC Pin Connections (TBD: TODO: Add new channels)

7.8 Power-On Reset

The internal reset is controlled by two sources:

- VBAT3 Supply
- VDD_GPIO Voltage

If one of the voltages is lower than its limit, the internal reset is forced.

The reset levels control the state of all registers. As long as VBAT and VDD_GPIO are below their reset thresholds, the register contents are set to default. Access by serial interface is possible once the reset thresholds are exceeded.

Symbol	Parameter	Min	Тур	Max	Unit	Note
VPOR_VBAT	Overall Power-On Reset		2.0		V	Monitor voltage on V2_5; power-on reset for all internal functions; startup is guaranteed with VBAT>=3.0V
VGPIO_Vdd_TH_RISI NG	Reset Level for VDD_GPIO Rising		1.3	1.5		Monitor voltage on pin VDD_GPIO; rising level.
VGPIO_vdd_TH_FAL LING	Reset Level for VDD_GPIO Falling		1.0			Monitor voltage on pin VDD_GPIO; falling level.

7.9 Temperature Supervision

An integrated temperature sensor provides over-temperature protection for the AS3688. This sensor generates a flag if the device temperature reaches the overtemperature threshold of 140°. The threshold has a hysteresis to prevent oscillation effects.

If the device temperature exceeds the 140° threshold all current sources, the charge pump, the ldo and the dcdc converter is disabled and the ov temp flag is set. After decreasing the temperature by 5° (typically) operation is resumed.

The ov temp flag can only be reset by first writing a 1 and then a 0 to the (bit rst ov temp).

Bit ov_temp_on = 1 activates temperature supervision.

Table 24 - Overtemperature Detection

Symbol	Parameter	Min	Тур	Max	Unit	Note	
T140	ov_temp Rising Threshold		140		º C		
Thyst	ov_temp Hystersis		5		º C		
701 Tomas	veture Comenciation De		-			10	
7.9.1 Tempe	rature Supervision Re	egister	S				

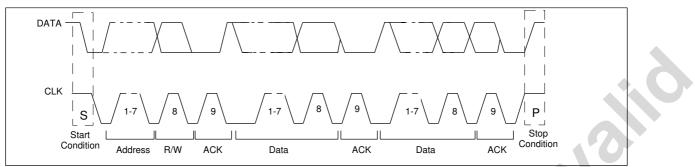
7.9.1 Temperature Supervision Registers

Addr:	20h	Overtemp Co	ontrol	
Addr.	2911	This register	reads and res	sets the overtemperature flag.
Bit	Bit Name	Default	Access	Description
0	ov_temp_on	1	W	Activates/deactivates device temperature supervision. Default: Off – all other bits are only valid if this bit is set to 1. 0 = Temperature supervision is disabled. No reset will be generated if the device temperature exceeds 140°C. 1 = Temperature supervision is enabled.
1	ov_temp	N/A	R	 Indicates that the overtemperature threshold has been reached; this flag is not cleared by an overtemperature reset. It has to be cleared using bit rst_ov_temp.
2	rst_ov_temp	0	R/W	The ov_temp flag is cleared by first setting this bit to 1, and then setting this bit to 0.
7:3				N/A

7.10 Serial Interface

The AS3688 is controlled using serial interface pins CLK and DATA.

7.10.1 Serial Interface Features


- Fast Mode Capability (Maximum Clock Frequency is 400 kHz)
- 7-bit Addressing Mode
- Write Formats
 - Single-Byte Write _
 - Page-Write _
- Read Formats
 - **Current-Address Read**
 - Random-Read
 - Sequential-Read
- DATA Input Delay and CLK Spike Filtering by Integrated RC Components

7.10.2 Device Address Selection

The serial interface address of the AS3688 has the following addresses (factory programmable to 80h,81h or 82h, 83h)

- 80h Write Commands
- 81h Read Commands

Figure 33 – Complete Serial Data Transfer

7.10.2.1 Serial Data Transfer Formats

Definitions used in the serial data transfer format diagrams are listed in the following table:

Symbol	Definition	R/W (AS3688 Slave)	Notes		
S	Start Condition after Stop	R	1 bit		
Sr	Repeated Start	R	1 bit		
DW	Device Address for Write	R	10000010b (80h).		
DR	Device Address for Read	R	10000011b (81h)		
WA	Word Address	R	8 bits		
A	Acknowledge	W	1 bit		
N	Not Acknowledge	R	1 bit		
reg_data	Register Data/Write	R	8 bits		
data (n)	Register Data/read	R	1 bit		
Р	Stop Condition	R	8 bits		
WA++	Increment Word Address Internally	R	During Acknowledge		

Table 25 - Serial Data	Transfor B	to Definitions
Table 25 – Senai Dala	Transier by	le Demnitions

Figure 34 – Serial Interface Byte Write

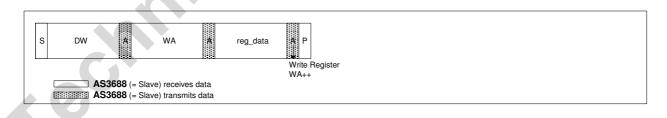
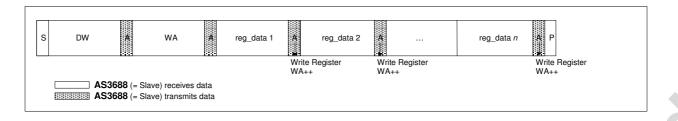
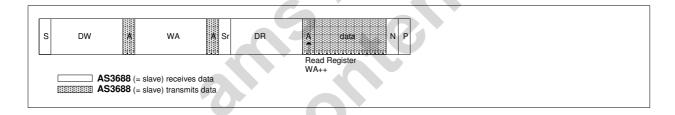



Figure 35 - Serial Interface Page Write

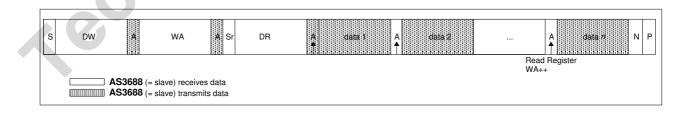

Byte Write and Page Write formats are used to write data to the slave.

The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be sent to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations.

For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register byte transmitted from the slave. In Read Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally.

The following diagrams show the serial read formats supported by the AS3688.

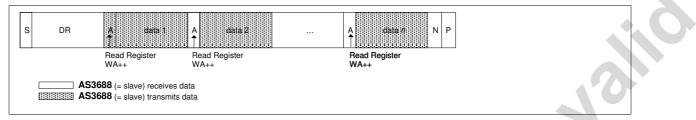
Figure 36 – Serial Interface Random Read



Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master.

The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address.

In order to change the data direction a repeated START condition is issued on the 1st CLK pulse after the ACKNOWLEDGE bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a NOT ACKNOWLEDGE, and issues a STOP condition on the bus.


Figure 37 – Serial Interface Sequential Read

Sequential Read is the extended form of Random Read, as multiple register-data bytes are subsequently transferred.

In contrast to the Random Read, in a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a NOT ACKNOWLEDGE following the last data byte and subsequently generate the STOP condition.

To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read address.

Analogous to Random Read, a single byte transfer is terminated with a NOT ACKNOWLEDGE after the 1st register byte. Analogous to Sequential Read an unlimited number of data bytes can be transferred, where the data bytes must be responded to with an ACKNOWLEDGE from the master.

For termination of the transmission the master sends a NOT ACKNOWLEDGE following the last data byte and a subsequent STOP condition.

7.11 Operating Modes

If the voltage on VDD_GPIO is less than 0.3V, the AS3688 is in shutdown mode and its current consumption is minimized (I(BAT) = ISHUTDOWN) and all internal registers are reset to their default values and the serial interface is disabled.

If the voltage on VDD_GPIO rises above 1.5V, the AS3688 serial interface is enabled and the AS3688 and the standby mode is selected.

If the LDO ANA1 is enabled (Ido_ana1_on=1) and Ido_ana1_lpo is set, the AS3688 enters low power mode (I(BAT) = ILOWPOWER).

The AS3688 is switched automatically from standby mode (I(BAT) = ISTANDBY) or low power mode into normal mode (I(BAT) = IACTIVE) and back, if one of the following blocks are activated:

- LDO ANA1 in normal mode (Ido_ana1_lpo=0)
- LDO ANA2
- Charge pump
- External charge pump
- Step up regulator
- Any current sink
- ADC conversion started
- PWM active
- Pattern mode active.

If any of these blocks are already switched on (active mode) the internal oscillator is running and a write instruction to the registers is directly evaluated within 1 internal CLK Cycle (Typ. 1usec)

If all these blocks are disabled (standby mode or lowpower mode), a write instruction to enable these blocks is delayed by 64 CLK cycles (oscillator will startup, within max 200usec).

8 Registermap

Table 26 – Registermap

Register Name	Adr	Defa					itent			
	ess	ult	b7	b6	b5	b4	b3	b2	b1	b0
Reg. control	00h	00	ldo_an a1_lpo			cp_ext_ on	step_u p_on	cp_on	ldo_an a2_on	ldo_ana 1_on
curr12 control	01h	00h					curr2	mode	curr1	_mode
curr rgb control	02h	00h			rgb3_	mode	rgb2_	mode	rgb1_	_mode
curr3 control1	03h	00h	curr33	_mode	curr32	_mode	curr31	_mode	curr30	_mode
curr4 control	04h	00h			curr43	_mode	curr42	_mode	curr41	_mode
GPIO output	05h	00h	gpi_cur r33_en	gpi_cur r32_en	gpi_cur r31_en	gpi_cur r30_en	gpi_en	gpio2_ out	gpio1_ out	gpio0_o ut
GPIO signal	06h	00h	gpi_cur r33_in	gpi_cur r32_in	gpi_cur r31_in	gpi_cur r30_in	gpi_in	gpio2_i n	gpio1_i n	gpio0_in
Ldo ana1 voltage	07h	Fuse					ldo	_ana1_vol	tage	
Ldo ana2 voltage	08h	Fuse			ldo_an a2_pull d	9	ldo	_ana2_vol	tage	
Curr1 current	09h	00h				curr1_	current	7		
Curr2 current	0Ah	00h				curr2_	current			
Rgb1 current	0Bh	00h				rgb1_	current			
Rgb2 current	0Ch	00h				rgb2_	current			
Rgb3 current	0Dh	00h				rgb3_	current			
Curr3x strobe	0Eh	00h				curr3x	_strobe			
Curr3x preview	0Fh	00h	U			curr3x_	preview			
Curr3x other	10h	00h				curr3x	_other			
Curr3 strobe control	11h	00h		strobe	_timing		strobe	_mode	strob	e_ctrl
Curr3 control2	12h	00h	2	txmask _invert	curr3x_ strobe_ high	curr3x_ ext_ovt emp	txmask _on	previe	ew_ctrl	preview _off_aft er strobe
Curr41 current	13h	00h				curr41	current			
Curr42 current	14h	00h				curr42	_current			
Curr43 current	15h	00h				curr43	_current			
Pwm control	16h	01h		pwm_g pio2	pw	m_dim_spe	eed	pwm_di	m_mode	pwm_m ode
pwm code	17h	00h				pwm_	_code			
Pattern control	18h	00h	curr33_ pattern	curr32_ pattern	curr31_ pattern	curr30_ pattern	softdim _patter n	patterr	n_delay	pattern_ color
Pattern data0	19h	00h				pattern_	data[7:0]			
Pattern data1	1Ah	00h				pattern_c	data[15:8]			
Pattern data2	1Bh	00h				pattern_d	ata[23:16]			
Pattern data3	1Ch	00h				pattern_d	ata[31:24]			

Register Name	Adr	Defa				Cor	ntent			
negister Name	ess	ult	b7	b6	b5	b4	b3	b2	b1	b0
Ext. Charge pump mode	1Dh	00h				cp_ext_ lowcurr	cp_e	xt_clk	cp_ex	t_mode
GPIO01_control	1Eh	44h	gpio1	_pulls	gpio1_	mode	gpio0	pulls	gpio0	_mode
GPIO2_control	1Fh	0Ch					gpio2	pulls	gpio2	_mode
GPIO driving cap	20h	00h					gpio3_I ow_cur r	gpio2_I ow_cur r	gpio1_l ow_cur r	gpio0_lo w_curr
DCDC control1	21h	00h		ste	p_up_vtun	ing		step_	up_fb	step_up _frequ
DCDC control2	22h	04h	step_u p_fb_a uto		curr2_p rot_on	curr1_p rot_on	step_u p_lowc ur	step_u p_prot	skip_fa st	step_up _res
CP control	23h	00h		cp_aut o_on		•	_switchin	cp_r	node	cp_clk
CP mode Switch1	24h	00h		rgb3_o n_cp	rgb2_o n_cp	rgb1_o n_cp	curr33_ on_cp	curr32_ on_cp	curr31_ on_cp	curr30_ on_cp
CP mode Switch2	25h	00h				curr43_ on_cp	curr42_ on_cp	curr41_ on_cp	curr2_o n_cp	curr1_o n_cp
ADC_control	26h	00h	start_c onversi on				adc_	select	1	1
ADC_MSB result	27h	NA	result_ not_rea dy	D9	D8	D7	D6	D5	D4	D3
ADC_LSB result	28h	NA					·	D2	D1	D0
Overtemp control	29h	01h						rst_ov_ temp	ov_tem	ov_tem p_on
Curr low voltage status1	2Ah	NA	0	rgb3_lo w_v	rgb2_lo w_v	rgb1_lo w_v	curr33_ low_v	curr32_ low_v	p curr31_ low_v	curr30_l ow_v
Curr low voltage status2	2Bh	NA			ovtemp _ext	curr43_ low_v	curr42_ low_v	curr41 low_v	curr2_I ow_v	curr1_lo w_v
Gpio current	2Ch	00h	0	pattern _slow	0	0	g	pio2_curre	nt	ext_ov_t emp_inv
Adder Current 1	30h	00h		adder_cu	rrent1 (car	ı be enable	d for RGB	1, CURR41	I, CURR1)	
Adder Current 2	31h	00h			,		ed for RGB			
Adder Current 3	32h	00h		adde	r_current3	(can be er	habled for F	RGB3, CUF	RR43)	
Adder Enable 1	33h	00h			curr43_ adder	curr42_ adder	curr41_ adder	rgb3_a dder	rgb2_a dder	rgb1_ad der
Adder Enable 2	34h	00h							curr2_a dder	curr1_a dder
Subtract Enable	35h	00h						sub_en 3	sub_en 2	sub_en 1
	3Eh	C9h	1	1	0	0	1	0	0	1
ASIC ID1	0L11									

Note: If writing to register, write 0 to unused bits Note: Write to read only bits will be ignored Note: yellow color = read only

9 External Components

Table 27 – External Components List

Part Number	Value			Tol	Rating	Notes	Package
Part Number	min	typ	max	(min)	(max)	Notes	(min)
C1		100nF		+/-20%	6.3V	Ceramic, X5R (CREF)	0201
C2	1µF		4.7µF	+/-20%	6.3V	Ceramic, X5R (SENSES_P)	0603
C3		2.2µF		+/-20%	6.3V	Ceramic, X5R (VANA1) (e.g. Taiyo Yuden JDK105BJ225MV-F)	0402
C4	1µF		4.7µF	+/-20%	6.3V	Ceramic, X5R (V2_5) (e.g. Taiyo Yuden JMK105BJ105KV-F)	0402
C5		2.2µF		+/-20%	6.3V	Ceramic, X5R (VBAT1, VBAT2) (e.g. Taiyo Yuden JMK107BJ225MA-T)	0603
C6		2.2µF		+/-20%	6.3V	Ceramic, X5R (Charge Pump) (e.g. Taiyo Yuden JMK107BJ225MA-T)	0603
C7		2.2µF		+/-20%	6.3V	Ceramic, X5R (Charge Pump) (e.g. Taiyo Yuden JMK107BJ225MA-T)	0603
C8		2.2μF/ 4.7μF		+/-20%	6.3V	Ceramic, X5R (Charge Pump Output) (e.g. Taiyo Yuden JMK107BJ475MA-T) capacitor must have at least 1.5µF under all conditions	0603
C9		2.2µF		+/-20%	25V	Ceramic, X5R, X7R (Step Up DCDC converter output) (e.g. Taiyo Yuden TMK316BJ475KF)	1206
C10		1.5nF		+/-20%	25V	Ceramic, X5R (Step Up DCDC Feedback)	0402
C11		15nF		+/-20%	6.3V	Ceramic, X5R (Step Up DCDC Feedback) – not required for overvoltage detection	0402
C12		2.2µF	2	+/-20%	6.3V	Ceramic, X5R (RGB3/VANA2) (e.g. Taiyo Yuden JDK105BJ225MV-F) (only if VANA2 LDO is used)	0402
R1		220kΩ		+/-1%		Bias Resistor	0201
R2		100mΩ		+/-5%		Shunt Resistor	0805
R3		1ΜΩ		+/-1%		Step Up DC/DC Converter Voltage Feedback	0201
R4		100kΩ		+/-1%		Step Up DC/DC Converter Voltage Feedback – not required for overvoltage protection	0201
R5		1-10kΩ		+/-20%		Serial DATA line Pullup resistor	0201
R6						Light Sensor – optional	
L1		10µH		+/-20%		Recommended Type: Coiltronics SD- 12-100 or Panasonic ELLSFG100MA	

Part Number		Value		Tol	Rating	Notes	Package
Fart Number	min	typ	max	(min)	(max)	NOLES	(min)
D1	CMDSH2-	-3, BAT760	or similar			Shottky Diode; Central Semiconductor (CMDSH2-3) Philips, STM (BAT760)	SOD232
D2:D15		LED				As required by application	
Q1	Q1 Si1304, FDG313N or similar					NMOS switching transistor; Vishay (Si1304), Fairchild (FDG313N)	SOT-232

Ċ

10 Pinout and Packaging10.1 Pin Description

Table 28 – Pinlist QFN32

Pin	Name	Туре	Description
1	GPI	DIO3	General purpose input
2	C2_N	AIO	Charge Pump flying capacitor; connect a ceramic capacitor of 2.2 μ F (±20%) to this pin.
3	VBAT2	S	Charge Pump supply pad. Note:Always connect this pin to VBAT.
4	C2_P	AIO	Charge Pump flying capacitor; connect a ceramic capacitor of 2.2 μ F (±20%) to this pin.
5	CP_OUT	AIO	Output voltage of the Charge Pump; connect a ceramic capacitor of 2.2 μF (±20%) .
6	C1_P	AIO	Charge Pump flying capacitor; connect a ceramic capacitor of 2.2 μ F (±20%) to this pin.
7	VBAT1		Supply pad for Charge Pump. Note:Always connect this pin to VBAT.
8	C1_N	AIO	Charge Pump flying capacitor; connect a ceramic capacitor of $2.2\mu F$ (±20%) to this pin.
9	CURR33	AI	Analog current sink input (intended for LED flash).
10	CURR32	AI	Analog current sink input (intended for LED flash).
11	CURR31	AI	Analog current sink input (intended for LED flash).
12	CURR30	AI	Analog current sink input (intended for LED flash).
13	GPIO2	DIO3	General purpose input/output.
14	VDD_GPIO	S	Supply pad for GPIOs and serial interface.
15	GPIO1	DIO3	General purpose input/output, ADC input.
16	GPIO0	DIO3	General purpose input/output, ADC input.
17	CLK	DI3	Clock input for serial interface.
18	DATA	DIO3	Serial interface data input/output.
19	CURR1	AI_HV	Analog current sink input (intended for LED).
20	CURR2	AI_HV	Analog current sink input (intended for LED).
21	VANA1	AO	Output voltage of the Analog LDO VANA1. Connect a ceramic capacitor of 1μ F (±20%) or 2.2 μ F (+100%/-50%).
22	VBAT3	S	Supply pad; always connect to VBAT.
23	RGB3 (VANA2)		RGB Current sink input Alternative function: Output voltage of the Analog LDO VANA2. Connect a ceramic capacitor of 1 μ F (±20%) or 2.2 μ F (+100%/-50%) if this Ido is used.
24	SENSE_N (CURR43)	AIO	Negative sense input of shunt resistor for Step Up DC/DC Converter. Alternative function: General purposed current sink
25	SENSE_P (CURR42)	AIO	Positive sense input of shunt resistor for Step Up DC/DC Converter. Alternative function: General purposed current sink
26	DCDC_GATE	AO	DCDC gate driver.
27	RGB1	AI	RGB Current sink input
28	RGB2	AI	RGB Current sink input

Table 28 - Pinlist QFN32

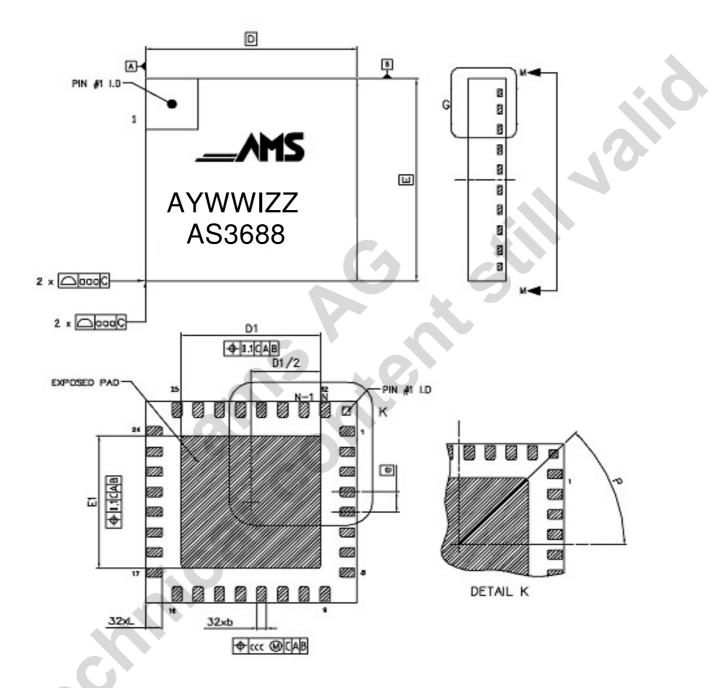
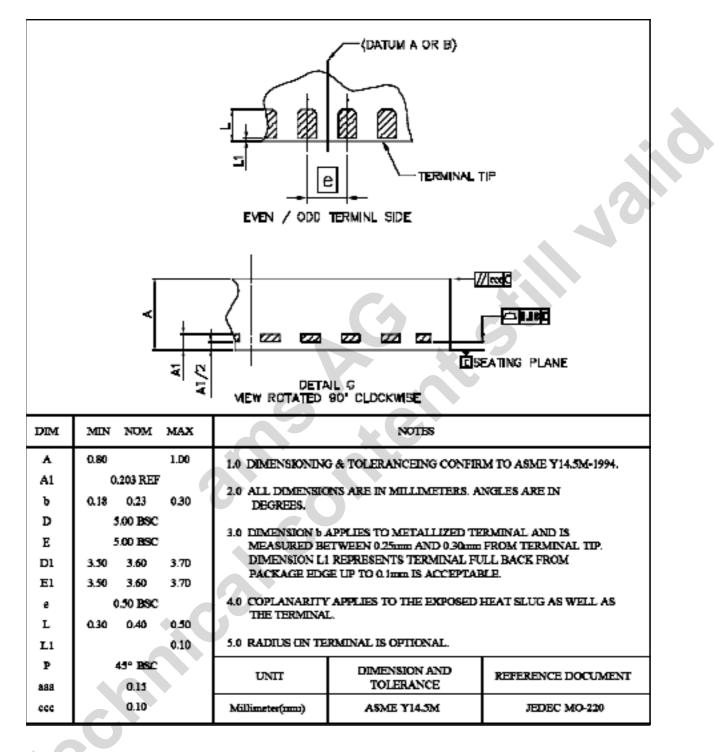

Pin	Name	Туре	Description
29	DCDC_FB (CURR41)	AI	DCDC feedback. Connect to resistor string. Alternative function: General purposed current sink
30	V2_5		Output voltage of the Low-Power LDO; always connect a ceramic capacitor of 1μ F (±20%) or 2.2 μ F (+100%/-50%). Caution: Do not load this pin during device startup.
31	CREF	AIO	Bypass capacitor for the internal voltage reference; always connect a capacitor of 100nF. Caution: Do not load this pin.
32	RBIAS	AIO	External resistor; always connect a resistor of 220k Ω (±1%) to ground. Caution: Do not load this pin.
33	VSS	VSS	Ground pad (QFN32: exposed paddle).

Table 29 - Pin Type Definitions

Туре	Description
DI	Digital Input
DI3	3.3V Digital Input
DO	Digital Output
DIO	Digital Input/Output
DIO3	3.3V Digital Input/Output
OD	Open Drain (the device can only pulldown this type of pin)
AIO	Analog Pad
AI	Analog Input
AI_HV	High-Voltage (15V) Pin
AO	Analog Output (5V)
AO3	Analog Output (3.3V)
S	Supply Pad
GND	Ground Pad
e ^C	

10.2 Package Drawings and Markings

Figure 39 - QFN 32 - 5x5mm with Exposed Paddle



JEDEC Package Outline Standard: MO-220 VHHD-5 - Lead Finish: 100% Sn "Matte Tin".

Marking: AYWWIZZ A: Pb-Free Identifier Y: Last Digit of Manufacturing Year WW: Manufacturing Week I: Plant Identifier ZZ: Traceability Code

Revision 1.1.1 / 20060707

Figure 40 - QFN 32 - Detail Diagram

11 Ordering Information

Device ID	Part Number	Package Type	Delivery Form*	Description
AS3688-PDR-Z	AS3688-EAA-Z	QFN 32	Tape and Reel	5 x 5mm, Pitch = 0.5mm
	AS3688-EBA-Z	QFN 32	Tube	5 x 5mm, Pitch = 0.5mm
AS3688B-PDR-Z	AS3688B-EAA-Z	QFN 32	Tape and Reel	5 x 5mm, Pitch = 0.5mm; version with CURR42 and CURR43 current source but without dcdc converter
	AS3688B-EBA-Z	QFN 32	Tube	

Where:

P = Package Type:

E = QFN 5 x 5 x 1mm

D = **Delivery Form**:

A = Tape and Reel

B = Tube

R = Revision

Z = Pb-Free IC Package

* Dry-pack sensitivity level = 3 in accordance with *IPC/JEDEC J-STD-033A*.

Copyright

Copyright © 1997-2006, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent identification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters:

austriamicrosystems AG Business Unit Communications A 8141 Schloss Premstätten, Austria T. +43 (0) 3136 500 0 F. +43 (0) 3136 5692 info@austriamicrosystems.com

For Sales Offices, Distributors and Representatives, please visit:

www.austriamicrosystems.com

austriamicrosystems – a leap ahead

www.austriamicrosystems.com (ptr,tje)